
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

VIRTUAL REALITY TRANSFER PROTOCOL (VRTP):
IMPLEMENTING A MONITOR APPLICATION FOR
THE REAL-TIME TRANSPORT PROTOCOL (RTP)

USING THE JAVA MEDIA FRAMEWORK (JMF)

by

Francisco Afonso

September 1999

Thesis Advisor: Don Brutzman
Second Reader: Don McGregor

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-
0188.Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC
20503.1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1999
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE

Virtual Reality Transfer Protocol (vrtp): Implementing a Monitor Application for
the Real-time Transport Protocol using the Java Media Framework (JMF)

6. AUTHOR

Francisco Afonso

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT

The Real-time Transport Protocol (RTP) supports the transmission of time-based media, such as
audio and video, over wide-area networks (WANs), by adding synchronization and quality-of-
service (QoS) feedback capabilities to the existing transport protocol. RTP has been widely used in
the Multicast Backbone (MBone), a virtual network that has become a shared worldwide medium for
Internet multicast communications.

This work presents the design patterns, architecture and implementation of an RTP monitor
application using the Java Media Framework (JMF), a new Java Application Programming Interface
(API) for multimedia support. An RTP monitor is an application that receives packets from all
participants in a multicast session in order to estimate the quality of service for distribution monitoring,
fault diagnosis and both short and long-term statistics.

This new RTP monitor is available as a component of the Virtual Reality Transfer Protocol
(vrtp), a protocol being developed to support large-scale virtual environments (LSVEs) over the
Internet. Initial test results are satisfactory for audio and video streams, as well as prototype RTP-
compliant Distributed Interactive Simulation (DIS) protocol streams. Future work includes
automated monitoring across WANs and standardizing structured data formats to comply with
Management Information Base (MIB) requirements using Extensible Markup Language (XML)
target set definitions.

15. NUMBER OF PAGES

232
14. SUBJECT TERMS

Multicasting, Real-time Transport Protocol, Virtual Reality, Java,
Multimedia, RTP, vrtp 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18, 298-102

ii

iii

Approved for public release; distribution is unlimited.

VIRTUAL REALITY TRANSFER PROTOCOL (VRTP):
IMPLEMENTING A MONITOR APPLICATION FOR THE
REAL-TIME TRANSPORT PROTOCOL (RTP) USING THE

JAVA MEDIA FRAMEWORK (JMF)

Francisco Carlos Afonso
Lieutenant Commander, Brazilian Navy
B.S.E.E., University of Sao Paulo, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author:
Francisco Carlos Afonso

Approved by:
Don Brutzman, Thesis Advisor

Don McGregor, Second Reader

Dan C. Boger, Chair

Department of Computer Science

iv

v

ABSTRACT

The Real-time Transport Protocol (RTP) supports the transmission of time-based

media, such as audio and video, over wide-area networks (WANs), by adding

synchronization and quality-of- service (QoS) feedback capabilities to the existing

transport protocol. RTP has been widely used in the Multicast Backbone (MBone), a

virtual network that has become a shared worldwide medium for Internet multicast

communications.

This work presents the design patterns, architecture and implementation of an

RTP monitor application using the Java Media Framework (JMF), a new Java

Application Programming Interface (API) for multimedia support. An RTP monitor is an

application that receives packets from all participants in a multicast session in order to

estimate the quality of service for distribution monitoring, fault diagnosis and both short

and long-term statistics.

This new RTP monitor is available as a component of the Virtual Reality Transfer

Protocol (vrtp), a protocol being developed to support large-scale virtual environments

(LSVEs) over the Internet. Initial test results are satisfactory for audio and video streams,

as well as prototype RTP-compliant Distributed Interactive Simulation (DIS) protocol

streams. Future work includes automated monitoring across WANs and standardizing

structured data formats to comply with Management Information Base (MIB)

requirements using Extensible Markup Language (XML) target set definitions.

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND ... 1

B. MOTIVATION.. 1

C. OBJECTIVES.. 2

D. THESIS ORGANIZATION ... 3

II. RELATED WORK... 5

A. INTRODUCTION ... 5

B. RTP MONITORING IN MEDIA CONFERENCE APPLICATIONS 5

1. Video Conferencing Tool (VIC) ... 5
2. Robust Audio Tool (RAT).. 7

C. DEDICATED MONITORS ... 8

1. Mtrace.. 8
2. Session Directory (SDR) Monitor... 8
3. Rtpmon .. 9
4. MultiMON ... 11
5. MHealth ... 12

D. VRTP .. 13

E. INTERNET 2 SURVEYOR... 15

F. DESIGN PATTERNS.. 15

III. REAL-TIME TRANSPORT PROTOCOL (RTP).. 17

A. INTRODUCTION ... 17

B. OVERVIEW OF TRANSPORT RELATIONSHIPS.............................. 17

C. RTP ... 18

1. RTP Units: Mixer, Translator and Monitor 18
2. RTP Header.. 19
3. Profiles and RTP Header Extension.. 20

D. RTP SESSION ADDRESSING ... 21

viii

E. RTP CONTROL PROTOCOL (RTCP).. 22

1. Sender Report (SR) .. 24
2. Receiver Report (RR) ... 27
3. Source Description (SDES) .. 29
4. Goodbye (BYE) ... 32

F. MULTIMEDIA IN RTP .. 33

G. ANALYSIS OF SR AND RR REPORTS... 33

H. RTP PROFILES AND PAYLOAD FORMAT SPECIFICATIONS 34

1. Profile Specification Documents... 34
2. Payload Format Specification Documents................................... 34

I. SUMMARY... 35

IV. JAVA MEDIA FRAMEWORK (JMF)... 37

A. INTRODUCTION ... 37

B. OVERVIEW.. 37

C. JMF ARCHITECTURE... 38

D. RTP SESSION MANAGER API ... 42

1. RTP Streams .. 42
2. RTP Participants... 43
3. RTCP Source Description... 43
4. RTCP Report.. 44
5. Event Listeners... 46
6. RTP Media Locator and RTP Session Address 47
7. RTP Session Manager .. 49
8. Receiving and Presenting RTP Media Streams 50
9. Transmitting RTP Streams.. 51
10. RTP Statistics ... 53

D. SUMMARY... 54

V. DESIGN AND IMPLEMENTATION OF THE RTPMONITOR APPLICATION... 55

A. INTRODUCTION ... 55

B. RTPMONITOR FUNCTIONALITY AND INTERFACE...................... 55

1. Graphical User Interface (GUI) .. 55
2. Statistics Display .. 56
3. Statistics Recording .. 57
4. Media Presentation ... 57
5. Command Line Operation .. 57

ix

C. RTPMONITOR CLASS DESIGN .. 58

1. RtpMonitorManager and RtpUtil .. 58
2. RecordTask and FileCatalog... 60
3. RtpPlayerWindow .. 61
4. RtpMonitor... 63
5. RtpMonitor Applet ... 63
6. RtpMonitorCommandLine.. 63

D. SUMMARY... 64

VI. RTP MANAGEMENT INFORMATION BASE (MIB) .. 65

A. INTRODUCTION ... 65

B. NETWORK MANAGEMENT OVERVIEW... 65

C. RTP MIB DESCRIPTION... 66

D. COMPATIBILITY WITH JMF STATISTICS 66

E. SUMMARY... 67

VII. EXPERIMENTAL RESULTS ... 69

A. INTRODUCTION ... 69

B. TEST RESULTS ... 69

C. OBSERVED PROBLEMS... 70

D. EXTENDING DIS-JAVA-VRML PDU HEADER 70

E. SUMMARY... 71

VIII. CONCLUSIONS AND RECOMMENDATIONS... 73

A. RESEARCH CONCLUSIONS .. 73

B. RECOMMENDATIONS FOR FUTURE WORK 73

1. Participants Information ... 73
2. Extensible Markup Language (XML) Recording 74
3. Recorded Data Analysis and Presentation 74
4. Session Description Protocol (SDP) Reception 74
5. RtpMonitor Activation from SDR... 74
6. JMF Extensibility for Other Media ... 75
7. Automated Network Monitoring of RTP Streams for VRTP. 75
8. Design Patterns Course in Computer Science Curriculum........... 75

x

APPENDIX A. PREPARING UML DIAGRAMS USING RATIONAL ROSE 77

APPENDIX B. RTPMONITOR USER MANUAL .. 79

APPENDIX C. RTPMONITOR JAVADOC .. 91

APPENDIX D. RTPMONITOR SOURCE CODE .. 137

APPENDIX E. COMPARISON RTP MIB VERSUS JMF STATISTICS.................. 191

APPENDIX F. RTPHEADER JAVADOC... 192

APPENDIX G. RTPHEADER SOURCE CODE ... 207

LIST OF REFERENCES .. 213

INITIAL DISTRIBUTION LIST .. 217

xi

ACKNOWLEDGEMENTS

I would like to thank my wife Helena for the continuous support and patience

regarding my academic work at NPS.

To Professor Brutzman, I offer my thanks for the friendship and enthusiasm I

have experienced during this time.

xii

1

I. INTRODUCTION

A. BACKGROUND

The Multicast Backbone (MBone) is a virtual network that has been in operation

since 1992. It was initially used to multicast audio and video from meetings of the

Internet Engineering Task Force, but nowadays it has become a shared worldwide

medium with many diverse channels for Internet multicast communications (Macedonia,

et al., 94).

The Real-time Transport Protocol (RTP) was developed to support time-based

media, such as audio and video, over multicast-capable networks (Schulzrinne, et al., 99).

RTP is the basic packet header format for MBone application streams. Using RTP, a

multicast session between several participants can be established, making possible the

correct synchronization of the exchanged media and the feedback of each participant

about the quality of reception. The RTP Control Protocol (RTCP) performs the feedback

and control mechanisms of RTP.

Java Media Framework (JMF) is a new Java Application Programming Interface

(API) developed by Sun and other companies to allow Java programmers use multimedia

features in applications and applets (Sun, 99). JMF supports RTP transmission and

reception of audio and video streams. This thesis examines network-monitoring issues

relevant to RTP through implementation and testing of a JMF application.

B. MOTIVATION

Since its inception, RTP has been mostly used in audio and video conferences.

However, a diverse set of multicast applications can take benefit of RTP mechanisms for

2

synchronization, such as exchanging simulation data over a wide-area network (WAN).

RTP is particular important because it is used by backbone routers to support Quality of

Service (QoS) related performance optimization.

The Virtual Reality Transfer Protocol (vrtp) is developed to provide client, server,

multicast streaming and network-monitoring capabilities in support of internetworked 3D

graphics and large-scale virtual environments (LSVEs) (Brutzman, 99). RTP is an

integral part of the vrtp architecture, used in both the streaming and monitoring

components.

JMF is a possible solution for the implementation of the RTP protocol in vrtp.

JMF is a free package and is an approved extension of the Java language application

programming interface (API).

C. OBJECTIVES

The goal of this thesis is the implementation of a monitor application for the Real-

time Transport Protocol (RTP) using Java Media Framework (JMF). An RTP monitor is

an application that receives packets sent by all participants in order to estimate the quality

of service for distribution monitoring, data recording, statistics analysis and fault

diagnosis (Schulzrinne, et al., 99). The emphasis is in both short-term and long-term

statistics by having recording capabilities for future analysis. As a result of this work, an

example set of classes for monitoring RTP sessions can be provided to vrtp applications.

3

D. THESIS ORGANIZATION

The remaining chapters of this thesis are organized as follows. Chapter II

describes work related to RTP monitoring. Chapter III presents the RTP protocol

functionality and packet formats. Chapter IV provides an overview of the JMF

architecture with emphasis on the RTP classes. Chapter V describes the design and

implementation of the RTP monitor application, and the interdependency between the

RTP Monitor and JMF classes. Chapter VI contains a study of compatibility between

JMF statistics and the proposed RTP Management Information Base (MIB) (Baugher, et

al., 99). Chapter VII contains the experimental results achieved and problems observed.

Finally, Chapter VIII presents conclusions and provides recommendations for future

work.

4

THIS PAGE LEFT INTENTIONALLY BLANK

5

II. RELATED WORK

A. INTRODUCTION

This chapter presents some related work in the area of RTP monitoring. RTP

monitoring is closely related to the RTCP protocol, but some applications discussed here

combine RTCP data with multicast route tracing, improving the monitoring quality.

Applications are considered in into two categories: media conference applications with

monitoring features, and dedicated monitors. This chapter also contains pertinent

information about the vrtp protocol and the Internet 2 Surveyor project.

B. RTP MONITORING IN MEDIA CONFERENCE APPLICATIONS

Most conference applications used in MBone can display some sort of RTP

monitoring data. As the emphasis of these applications is media presentation and stream

quality assessment, the statistical data is usually not enough for network administration or

diagnostic purposes. The RTP statistics features of some conference applications are

described here.

1. Video Conferencing Tool (VIC)

VIC is a video conferencing application developed by the Network Research

Group at the Lawrence Berkeley National Laboratory (LBNL) in collaboration with the

University of California, Berkeley (UCB). The software was improved by University

College of London (UCL). The latest version is 2.8ucl4. (UCL, 99)

 The RTP statistics window of each VIC video stream consists of a grid with

three columns (Figure 2.1). The first column, EWA (Exponentially Weighted Average), is

6

the change since the last sampling period (i.e. change over the last second); the middle

column, Delta, is a smoothed version of the EWA; and the last column, Total, is the

accumulated value since start-up. Clicking any of the buttons in the left column opens a

Plot Window displaying the statistics for that parameter graphically. (UCL, 99)

Figure 2.1 contains example RTP statistics for video VIC streams.

Figure 2.1 RTP Statistics in VIC showing video stream,
available statistics (right side) and a 10-second trace of missing-
packet data (lower-left corner). Recorded July 1999.

7

2. Robust Audio Tool (RAT)

RAT is an audio conference application developed by UCL. The latest version is

4.0.3 (UCL, 99). Figure 2.2 shows an example of RTP statistics available in RAT. Each

set of statistics is related to one receiving audio stream.

Figure 2.2 RTP Statistics in RAT.

8

C. DEDICATED MONITORS

1. Mtrace

Mtrace allows the user trace a route from a receiver to a source working

backwards using a particular multicast address. It runs only on Unix systems. If

either the receiver or the source is not participating in a multicast on the specified

address then mtrace may not work. Vic and vat can automatically launch the

mtrace utility. Mtrace is included in the mrouted distribution and can be

downloaded at the following site:

http://www.cs.unc.edu/~wangx/MBONE/mbonetoolarchive.html#mtrace

2. Session Directory (SDR) Monitor

SDR Monitor, short for SDR Global Session Monitoring Effort, is an

effort to track, manage, and present information about the availability of world-

wide multicast sessions using the SDR tool (Sarac, 99). SDR is a session directory

tool designed to allow the advertisement and joining of multicast conferences on

the MBone (UCL, 99).

The basic idea of the SDR Monitor is that the SDR application can

periodically send an an email to the project control containing all the session

announcements that are being received at the user site. All data collected is made

available in world-wide-web page, using a tabulated form that conveys

information about the session reachability.

9

3. Rtpmon

Rtpmon is a third-party RTP monitor written in C++ by the Plateau Multimedia

Research Group at Berkeley. Version 1.0 was the last release in 1996. It works only on

Unix systems. Both source code and binaries are available. It is possible to integrate

rtpmon with vic and/or vat by modifying the files .vic.tcl and/or .vat.tcl. This will add a

monitor button to vic and vat that when pressed will launch rtpmon. (Agarwal, 97)

Rtpmon provides a number of useful capabilities for sorting, filtering and

displaying the statistics generated in an RTP session (David, 96). Figure 2.3 shows an

example of the rtpmon Graphical User Interface (GUI). It displays RTCP statistics in a

table with senders listed along the top and listeners along the left. Each entry in the table

corresponds to the data obtained about a single sender-receiver pair. The program listens

to RTCP messages on a multicast address specified at startup time; there is no provision

for displaying data from multiple sessions. Information about each participant can be

obtained by clicking the participant's name in the table display; doing so brings up a

window with the session description items provided in the member's RTCP reports. The

information window also contains a button, which spawns mtrace for detailed single-

sender-receiver multicast routing data. Rtpmon can also display a brief history of the

statistics from each sender-receiver pair. Clicking on a data element in the main table

brings up charts for each of the statistics values that rtpmon tracks.

10

Figure 2.3 Rtpmon graphical user interface (GUI).

11

4. MultiMON

 MultiMON is a client/server monitor that collects, organizes and displays all the

IP multicast traffic that is detected at the location of a server (Robinson, et al, 96). It was

developed by the Communications Research Center at Ottawa. Last release was version

2.0 in July 1998. It can be downloaded at ftp://debra.dgbt.doc.ca/pub/mbone/multimon/.

MultiMON is a general-purpose multicast monitoring tool. It is intended to

monitor multicast traffic on local-area network (LAN) segments and assist a network

administrator in managing the traffic on an Intranet. The client main window displays the

total bandwidth occupied by the multicast traffic and gives a graphical breakdown of the

traffic by application type, as shown in Figure 2.4.

Figure 2.4 MultiMON client window (Robinson, et al, 96).

12

The software includes an RTCP monitoring and recording tool (MERCInari) that

allows an analysis of the RTCP data for QoS management. A session can be recorded for

later analysis. MultiMON is written in tk/tcl, but needs tcpdump, xplot, the distributed

processing additions and the object-oriented additions to tk/tcl. It runs in Sun

workstations, but it can be ported to other platforms including Windows 95/98 and NT.

5. MHealth

MHealth, the Multicast Health Monitor, is a graphical multicast monitoring tool

(Makofske, et al., 99). By using a combination of application-level protocol data for

participant information and a multicast route-tracing tool for topology information,

MHealth is able to present a multicast tree's topology and information about the quality

of received data. Figure 2.5 contains a screenshot of MHealth.

MHealth also provides data-logging functionality for the purpose of isolating and

analyzing network faults. Logs can be analyzed to provide information such as receiver

lists over time, route histories and changes, as well as the location, duration, and

frequency of packet loss (Makofske, et al., 99). MHealth was written in Java but needs

mtrace for its operation. Version 1.0 can be downloaded at:

http://steamboat.cs.ucsb.edu/mhealth/download-v1.0/.

13

D. VRTP

The Virtual Reality Transfer Protocol (vrtp) is a protocol being developed to

provide client, server, multicast streaming and network-monitoring capabilities in support

of internetworked 3D graphics and large-scale virtual environments (LSVEs) (Brutzman,

99). vrtp is designed to support interlinked VRML worlds in the same manner as http

was designed to support interlinked HTML pages. The intent is to develop a free library

Figure 2.5 MHealth display showing participants in a
multicast tree (Robinson, et al., 96).

14

to provide any machine with client, server, peer-to-peer and network monitoring

capabilities to navigate and join large, interactive, fully internetworked 3D worlds.

RTP is an integral part of the vrtp architecture, used in both the streaming and

monitoring components. Figure 2.6 shows the functional design of the vrtp streaming

behaviors component.

Figure 2.6 vrtp streaming behaviors component (Brutzman,99).

15

E. INTERNET 2 SURVEYOR

The university community has joined together with government and industry

partners to accelerate the next stage of Internet development. The Internet2 project is

bringing focus, energy and resources to the development of a new family of advanced

applications to meet emerging academic requirements in research, teaching and learning

(Advanced Networks, 97).

Surveyor is a measurement infrastructure that is being currently deployed at

participating sites around the world. Based on standards work being done in the Internet

Engineering Task Force (IETF), Surveyor measures the performance of the Internet

paths among partcipating organizations. The project is also developing methodologies

and tools to analyze the performance data. The project aims to create the infrastructure

and tools that will improve the ability to understand and effectively engineer the Internet

infrastructure (Advanced Networks, 97). Surveyor monitoring workstations installed at

NPS are expected to provide a controlled network environment supporting RtpMonitor

work.

F. DESIGN PATTERNS

Design Patterns are reusable solutions to recurring problems that occur during

software development. In 1995, the book “Design Patterns” (Gamma, 95) has started

popularizing the idea of patterns. In recent years, new patterns have been proposed and

several books about patterns have been released. Frequently, books about Design Patterns

give examples of pattern implementations in some computer language. A good book for

studying patterns in Java was written by Mark Grand (Grand, 98). Sun Microsystems’

Java Application Programming Interfaces (APIs) contain plenty of examples of pattern

16

use. Design patterns provided great benefit during the software analysis, design and

implementation work in this thesis.

17

III. REAL-TIME TRANSPORT PROTOCOL (RTP)

A. INTRODUCTION

This chapter presents the Real-time Transport Protocol (RTP) functionality and

packet format. RTP is a header format and control protocol designed to support

applications transmitting real-time data (such as audio, video, or simulation data), over

multicast or unicast network services. RTP was proposed by RFC1889 (Schulzrinne, et

al., 99) and has received wide acceptance.

B. OVERVIEW OF TRANSPORT RELATIONSHIPS

The transport layer provides a flow of data between hosts. In the TCP/IP protocol

suite there are two vastly different transport protocols: the Transmission Control Protocol

(TCP) and the User Datagram Protocol (UDP). While TCP provides a reliable flow of

data between two hosts, by using packet acknowledgements and retransmissions, UDP

just sends single packets with no guarantee that the packets will be received at the other

side.

RTP does not provide all the functionality required by a transport protocol. It is

intended to run over some transport protocol, such as UDP, primarily in multicast mode.

TCP is not suitable for real-time audio/video transfers because packet loss implies in

retransmissions that affect delay-sensitive data. Also TCP does not support multicasting.

Despite the implication of its name, RTP does not provide any means to ensure timely

delivery or to guarantee a desired quality of service. In fact, RTP was designed to satisfy

the needs of multi-participant multimedia conferences, where the loss of some packets or

some small delay will not affect the session significantly.

18

Basically, the RTP header provides a sequence number and a timestamp in each

packet, allowing the timing reconstruction of the receiving stream. Additionally, RTP

header specifies a payload type, allowing different data formats to originate from

different senders in a single session. Further parameters in the RTP packet header are

defined in a media-specific manner.

RTP is used together with the RTP Control Protocol (RTCP), which provides

mechanisms of synchronization, source identification and quality-of-service feedback.

C. RTP

This section summarizes RTP, which is formally described in RFC1889

(Schulzrinne, et al., 99).

1. RTP Units: Mixer, Translator and Monitor

A Mixer is an intermediate system that receives streams of RTP data packets from

one or more sources, possibly changes the data format, combines the streams in some

manner and then forwards the combined stream. A mixer sends its data just as if it were a

new source.

A Translator is an intermediate system that forwards packets without changing its

source description. Translators can be used as devices to convert encodings, such as

replicators from multicast to unicast, and such as application filters in firewalls.

A Monitor is an application that receives RTCP packets sent by all participants to

estimate the quality of service for distribution monitoring, fault diagnosis and long-term

19

statistics. The monitor is likely to be built into the applications participating in a session,

but it may also be a separate application that does not send or receive RTP data packets

such as third-party monitors.

RTP is designed to connect several end-systems in single or multiple sessions. An

end-system sends and/or receives RTP data packets. In addition, RTP supports the notion

of Translators and Mixers, which can be considered intermediate systems at the RTP

level. The need for these systems has been established by experiments with multicast and

video applications, especially for dealing with low-bandwidth connections and firewalls.

2. RTP Header

A RTP header precedes each RTP packet. Figure 3.1 represents an RTP header.

 0 4 8 9 16 31

V PX CC M PT sequence number

timestamp

synchronization source(SSRC) identifier

contributing source (CSRC) identifiers

.....

The following information is part of the header:

• Version (V): 2 bits - Identifies the version of RTP. The current version
defined in RFC1889 is two (2).

• Padding (P): 1 bit - If the padding bit is set, the packet contains one or more
additional padding bytes. The last byte contains the number of padding bytes,
including itself. The RTP header has no packet length field.

Figure 3.1 RTP Header Contents (Schulzrinne, et al., 99).

20

• Extension (X): 1 bit - If this bit is set the header will be followed by a header
extension.

• CSRC count (CC): 4 bits - Contains the number of contributing source
identifiers in the header.

• Marker (M): 1 bit – Can be used by a profile.

• Payload type (PT): 7 bits - Identifies the type of data (payload) carried by the
packet. The payload types for standard audio and video encodings are defined
in RFC1890 (Schulzrinne, 99).

• Sequence number: 16 bits - It is incremented each time a packet is sent. The
initial value is randomly generated.

• Timestamp: 32 bits - This field reflects the sampling instant of the first byte of
data. The clock frequency depends of the data type. For example, if audio data
is being sampled at 8KHz, and each audio packet has 20 ms of samples (160
sample values), the timestamp should be increased by 160 each 20 ms. The
timestamp initial value should be random.

• SSRC: 32 bits - This field identifies the synchronization source. It is a number
chosen randomly. It must be unique among all participants in a session. There
is a mechanism to solve conflicts when two sources choose the same number,
described in Session 8 of RFC1889. A participant need not use the same
SSRC identifier in all sessions of a multimedia session.

• CSRC list: 0 to 15 items, 32 bits each - The CSRC list identifies the
contributing sources for the payload contained in this packet. It is used only
by mixers, which combine several streams from different sources in a single
stream.

3. Profiles and RTP Header Extension

The RTP protocol is designed to be malleable and to allow modifications and

additions as defined by the corresponding media profile specification. Typically each

application only operates under one profile. For example, RFC1890 (Schulzrinne, et al.,

99) defines a profile for audio and video conferences.

21

In the RTP fixed header, the marker bit (M) and the payload type (PT) fields carry

profile-specific information. If the marker bit is set, a header extension will be added to

the RTP fixed header to provide the additional data functionality required for the profile.

The header extension has the following format seen in Figure 3.2.

 0 16 31
defined by the profile Length (# of 32-bit words)

header extension data

....

The length field defines the number of 32-bit words of the header extension,

excluding the first one. Therefore, zero is a possible value. Only a single variable-length

header extension can be appended to the RTP header.

D. RTP SESSION ADDRESSING

A session is an association among participants. It is defined by two transport

parameter pairs (two network addresses plus corresponding port numbers). One transport

address is used for transmitting RTP packets and the other is used for RTCP packets. The

destination transport address pair may be the same for all participants when using

multicast, or may be different for each when using unicast. For multicast UDP, the

multicast address for RTP and RTCP in a session must be the same, the RTP port must be

even, and the RTCP port must be the next higher (odd) port number. Multiple RTP

sessions are distinguished by different port number pairs and/or different multicast

addresses.

Figure 3.2 RTP Header Extension (Schulzrinne, et al., 99).

22

Some applications like audio and videoconferences require the use of two

sessions: one for audio and the other for video. Distinct media types should not be carried

in a single session, because of the different timing and bandwidth requirements.

 Figure 3.3 shows three different multicast conferences configurations. Part a) is a

single media conference, represented by a single session. Part b) and c) represent two

possible configurations for a conference with two types of media, e.g. audio and video.

E. RTP CONTROL PROTOCOL (RTCP)

RTCP provides back-channel monitoring and synchronization for use with RTP

streams. RTCP provides a periodic transmission of control packets to all participants in

the session. RTCP performs the following functions:

• Feedback on the quality of the data distribution. Receivers must periodically
send RTCP packets containing a set of information related to the quality of
each sender transmission, such as the number of lost packets, fraction of lost
packets, delay times and jitter (variations in delay).

• Provides information about the participants in the session. Each participant
must periodically send their canonical name (CNAME), e-mail address,
telephone number and so on. The canonical name must be unique among the
participants of a multimedia session (a group of sessions). The CNAME is
sent together with the SSRC identifier, allowing the detection of any collision
in choosing the SSRC identifier in a session.

• Media synchronization. RTCP conveys information about the absolute time
(wallclock) for each participant. If the senders are synchronized, it will be
possible to synchronize the different media in a session.

23

port 1 -RTP

port 2 -RTCP

port 1 – RTP

port 2 -RTCP

multicast
address

port 3 – RTP video

port 2 – RTCP audio multicast
address

port 1 – RTP audio

port 4 – RTCP video

port 3 – RTP video

port 2 – RTCP audio

port 1 – RTP audio

port 4 – RTCP video

multicast
address
audio

port 3 – RTP video

port 2 – RTCP audio

port 1 – RTP audio

port 4 – RTCP video

port 3 – RTP video

port 2 – RTCP audio

port 1 – RTP audio

port 4 – RTCP videomulticast
address
video

a)

b)

Figure 3.3 RTP Addressing Configuration Examples.

c)

24

As all participants must send RTCP packets, the rate must be controlled to avoid

excessive RTCP traffic as the number of participants scales up. This, each participant

must control his RTCP rate to guarantee that RTCP packets correspond to less than 5% of

the RTP session. Also, it is recommended that at least ¼ of the RTCP bandwidth would

be dedicated to senders. When the proportion of senders is greater than ¼ of the

participants, the sender gets its proportion from the full RTCP bandwidth. It is further

recommended that the interval between RTCP transmissions by each participant should

always be greater than 5 seconds.

RFC1889 defines five types of RTCP packets:

• SR: Sender Report, for transmission and reception of statistics from
participants that are active senders.

• RR: Receiver Report, for reception statistics from participants that are not
active senders.

• SDES: Source Description, for each participant transfer information about
himself.

• BYE: to notify the end of participation.

• APP: application specific functions.

Multiple RTCP packets need to be concatenated without any separator to form a

compound RTCP packet. Each participant must send RTCP compound packets with at

least one SR or RR and one SDES with his CNAME.

1. Sender Report (SR)

A Sender Report is issued if the participant has sent any RTP data packets since

the last report, otherwise a Receiver Report (RR) is issued. A sender report, besides

having statistical information about itself, may contain reception statistics of a maximum

25

of 31 other senders. If a sender has more than 31 receiver statistics to send then, it must

add a RR to the compound packet. The format of the Sender Report is shown in Figure

3.4.

The Sender Report packet consists of three sections: a header section, a sender

information section, and a receiver information section. A fourth profile-specific

extension section can be defined. The fields have the following meaning:

• Version (V): 2 bits - Identifies the version of RTP. The version defined in
RFC1889 is two (2).

 0 3 8 16 31
V P RC PT = 200 (SR) length

SSRC of sender

NTP timestamp, most significant word

NTP timestamp, least significant word

RTP timestamp

sender’s packet count

sender’s byte count

SSRR_1 (SSRC of the first source)

fraction
loss

cumulative number of packets loss

extended highest sequence number received

interarrival jitter

last SR (LSR)

delay since last SR (DLSR)

SSRR_2 (SSRC of the first source)

...

profile-specific extensions

Figure 3.4 RTCP Sender Report (SR) Format (Schulzrinne, et al., 99).

26

• Padding (P): 1 bit - If padding bit is set, the packet contains one or more
additional padding bytes. The last byte contains the number of padding bytes,
including itself. The padding bytes are included in the length field. Only the
last packet of a compound packet can use padding.

• Reception report count (RC): 5 bits - The number of reception report blocks
contained in this packet.

• Packet type (PT): 8 bits - It is set to 200 to identify a SR packet.

• Length: 16 bits - The length of the SR packet in 32-bit words minus one,
including the header and any padding.

• SSRC: 32 bits - The synchronization source identifier for this originator of
this SR packet.

• NTP timestamp: 64 bits - Indicates the wallclock time when this report is
sent. The wallclock represents the absolute day and time using the timestamp
format of the Network Time Protocol (NTP), described in RFC1305. The full
resolution NTP timestamp is a 64 bit unsigned number with 32 bits for the
integer part and 32 bits for the fractional part. It represents the number of
seconds relative to 0h UTC on 1 January 1900.

• RTP timestamp: 32 bits - Corresponds to the same time as the NTP timestamp
above, but in the same units and with the same random offset as the RTP
timestamp in data packets. This correspondence may be used for intra-media
and inter-media synchronization for sources whose NTP timestamps are
synchronized.

• Sender’s packet count: 32 bits - The total number of packets transmitted by
the sender since starting transmission until the time the SR packet was
generated. The count should be reset if the sender changes its SSRC identifier.

• Sender’s byte count: 32 bits - The total number of payload octets (i.e. not
including header or padding) transmitted in the RTP data by the sender since
starting the transmission until this SR packet was generated. The count should
be reset if the sender changes its SSRC identifier.

• SSRC_n: 32 bits - The SSRC identifier of the source to which the information
in this block pertains.

• Fraction lost: 8 bits - The fraction of RTP data packets from source SSRC_n
lost since the previous SR or RR packet. It is represented as a fixed-point
number with the binary point at the left edge of the field.

27

• Cumulative number of packets lost: 24 bits - The total number of RTP data
packets from source SSRC_n that have being lost since the beginning of the
reception.

• Extended highest sequence number received: 32 bits - The low 16 bits contain
the highest sequence number received in an RTP data packet from source
SSRC_n. The most significant 16 bits extend that sequence number with the
corresponding count of sequence number cycles.

• Interarrival jitter: 32 bits - An estimate of the statistical variance of the RTP
data packet interarrival time, measured in timestamp units and expressed as an
unsigned integer.

• Last SR timestamp (LSR): 32 bits - The middle 32 bits out of 64 bits in the
NTP timestamp received as part of the most recent RTCP SR packet from the
source SSCR_n.

• Delay since last SR (DLSR): 32 bits - The delay, expressed in units of
1/65536 seconds, between receiving the last SR packet from source SSRC_n
and sending this reception report block. Based on this information and the
LSR the sender can compute the round trip propagation delay to this receiver.
This can be done by the following formula: Round Trip = A- LSR- DLSR,
where A is the time the receiver gets the RR message. Figure 3.5 is a time
diagram that represents the DLSR.

2. Receiver Report (RR)

The format of the Receiver Report (RR) is the same of the Sender Report (SR)

except that the packet type field contains the value 201 and that there is no sender

information section.

An empty RR packet (RC=0) must be put at the head of a compound packet when

there is no data transmission or reception to report. Figure 3-6 shows the Receiver Report

packet format. Figure 3.6 represents a Receiver Report packet format.

28

time

receiver

SR

sender

LSR

DLSR

A

RR

Figure 3.5 Delay Since Last SR (DLSR) Time Diagram.

29

 0 3 8 16 31
V P RC PT = 201 (RR) length

SSRC of sender

SSRR_1 (SSRC of the first source)

Fraction
loss

cumulative number of packets loss

Extended highest sequence number received

interarrival jitter

last SR (LSR)

delay since last SR (DLSR)

SSRR_2 (SSRC of the first source)

...

profile-specific extensions

3. Source Description (SDES)

The SDES packet consists of a header section and zero or more chunks of data.

Each chunk is composed of items describing the source identified in that chunk. The

SDES packet format is shown in Figure 3.7.

Figure 3.6 Receiver Report (RR) Format (Schulzrinne, et al., 99).

30

 0 3 8 16 31

V
P

SC PT = 202 (SDES) length

SSRR_1 /CSRC_1

SDES items

SSRR_2 /CSRC_2

SDES items

...

The fields in the SDES packet are:

• Version (V), Padding (P) and length - As described for SR and RR packets.

• Packet type (PT): 8 bits - It is set to 202 to identify a SDES packet.

• Source count (SC): 5 bits - The number of SSRC/CRCS chunks contained in
this packet.

The SDES item format is shown in Figure 3.8.

 0 8 16 n
type length content

Figure 3.7 Source Description (SDES) Packet Format (Schulzrinne, et al., 99).

Figure 3.8 SDES Item Format (Schulzrinne, et al., 99).

31

The fields in each SDES item are:

• Type: 8 bits - Contains a value to identify a type of description. The following
values are defined in RFC1889:

Canonical Name – 1
 Name – 2
 Email –3

Phone – 4
Location – 5
Tool – 6
Note – 7
Private Extensions – 8

• Length: 8 bits - The length of the chunk content, in bytes.

• Content - Consists of text encoded in UTF-8 encoding specified in RFC2279.
This field is continuous and it is not limited to a 32-bit boundary. The field
must be terminated with a null octet, and followed by zero or more null octets
until the next 32-bit boundary. This kind of padding is separated from the one
specified with the Padding bit in the header.

Canonical name is the only mandatory SDES item. It must be sent on each RCTP

packet. As the canonical name will be used to identify a participant in single and multiple

RTP sessions, it must be unique. CNAME will be use to solve collisions with the SSRC

identifiers. A participant may have multiple SSCR identifiers, one for each related

session he is in, but he must have only one CNAME. As CNAME should provide

information in order to locate a source, its recommended formats are user@full hostname

or user@IPaddress.

32

4. Goodbye (BYE)

The BYE packet indicates that one or more participants are no longer active. The

packet has the format shown in Figure 3.9.

0 3 8 16 31

V P SC PT = 203 (BYE) length

SSRR_1 /CSRC_1

SSRR_2/CSRC_2

....

length reason for leaving ...

The header section has the same format of the previous RTCP packets. Following

the header there is list of all participants that are leaving the section. The reason for

providing the capability for more than one source in the BYE packet is the Goodbye

packet sent by a mixer. If a mixer shuts down, it must send a BYE packet listing its SSRC

and the CSRC of all sources it handles.

The last section is optional. It gives a reason by leaving a section, like “bad

reception” or “time for lunch.” The “length” and “reason for leaving” fields have the

same behavior as “length” and “context” fields of the SDES item.

Figure 3.9 BYE Packet Format (Schulzrinne, et al., 99).

33

F. MULTIMEDIA IN RTP

Each media must be carried in a distinct RTP session. Interleaving packets with

different RTP media types but using the same session and SSRC is not permitted, in order

to avoid the following problems:

• An SSRC has only one single timing and sequence number. Different payload
types would require distinct timing spaces. Also there would be no means to
identify which media suffered losses.

• The RTCP sender and receiver reports can only describe one timing and sequence
number space per SSRC and do not carry a payload type field.

• An RTP mixer would not be able to combine interleaved streams of incompatible
media onto one stream.

• It would not be possible to use different network paths or resource allocations for
each media.

G. ANALYSIS OF SR AND RR REPORTS

It is expected that reception quality feedback data will be useful not only for the

senders but also for receivers and third-part monitors. The senders can modify its

transmission based of the feedback; receivers can determine where the problems are

local, regional or global; network managers may use profile-independent monitors that

receive only the RTCP packets and not the corresponding RTP data streams to evaluate

the performance of their networks for multicast distribution. These mechanisms also

support protective and corrective mechanisms such as congestion avoidance and

congestion control.

The interarrival jitter field provides a short-term measure of network congestion.

The packet loss metric tracks persistent congestion, while the jitter measure tracks

34

transient congestion. The jitter measure may indicate congestion condition forming

before it leads to packet loss.

H. RTP PROFILES AND PAYLOAD FORMAT SPECIFICATIONS

RTP is intended to be tailored through modifications and/or additions to the

headers as needed. Multiple profiles have been defined, each with different

characteristics. Therefore, for a given application, a complete specification will require

one or more companion documents, as follows.

1. Profile Specification Documents

A Profile Specification Document defines a set of payload type codes and their

mapping to payload types. A profile may also define extensions or modifications to RTP

that are specific for that kind of applications. The only profile document issued as of this

writing is RFC 1890 - RTP Profile for Audio and Video Conferences with Minimal

Control.

2. Payload Format Specification Documents

A Payload Format Specification Document defines how a particular payload, such

an audio or video encoding, is to be carried in RTP. There is an Internet-Draft containing

guidelines to be followed by Payload Format Specification Documents (Handley, 99).

Several payload format specifications were proposed so far, most of them related to audio

and video encodings. Below is a list of payload format RFCs and Internet-Drafts:

• RFC 2032 - RTP Payload Format for H.261 Video Streams.
• RFC 2029 - RTP Payload Format of Sun's CellB Video Encoding.
• RFC 2190 - RTP Payload Format for H.263 Video Streams.
• RFC 2198 - RTP Payload for Redundant Audio Data.

35

• RFC 2250 - RTP Payload Format for MPEG1/MPEG2 Video.
• RFC 2343 - RTP Payload Format for Bundled MPEG.
• RFC 2429 - RTP Payload Format for the 1998 Version of ITU-T Rec. H.263

Video.
• RFC 2431 - RTP Payload Format for BT.656 Video Encoding.
• RFC 2435 - RTP Payload Format for JPEG Compressed Video.
• RTP Payload for Dial-Tone Multi-Frequency (DTMF) Digits.
• RTP Payload Format for X Protocol Media Streams.
• RTP Payload Format for MPEG-4 Streams.
• RTP Payload Format for User Multiplexing.
• RTP Payload Format for Reed-Solomon Codes.
• RTP Payload Format for Interleaved Media.
• RTP Payload Format for Telephone Signal Events.
• RTP Payload Format for DVD Format Video.

Other RTP related RFCs and Internet-Drafts include:

• RFC 2354 - Options for Repair of Streaming Media.
• RFC 2508 - Compressing IP/UDP/RTP Headers for Low-Speed Serial Links.
• Real-Time Protocol Management Information Base.
• Sampling the Group Membership in RTP.
• Issues and Options for RTP Multiplexing.
• Conformance Texts for RTP Scalability Algorithms.
• RTP Testing Strategies.

I. SUMMARY

The Real-Time Transport Protocol (RTP) provides a way to transmit time-based

media over wide-area networks (WAN), adding synchronization and feedback features

over the existing transport protocol. Although RTP was initially devised for application

in audio and video conferences, this protocol can be applied to convey other types of

streamed media across the network.

36

THIS PAGE LEFT INTENTIONALLY BLANK

37

IV. JAVA MEDIA FRAMEWORK (JMF)

A. INTRODUCTION

This chapter provides an overview of the Java Media Framework (JMF) basic

architecture and the specialized set of classes to manage RTP transmission, reception and

control. Several Unified Modeling Language (UML) (Booch, et al, 97).

diagrams are used to illustrate JMF classes interdependencies and behavior. The

software application Rational Rose 98i (Rational, 99) was used to import the class

components from the JMF API and to draw these diagrams. Appendix A contains a

description of how UML diagrams can be prepared using the software Rational Rose 98i.

 B. OVERVIEW

Java Media Framework (JMF) is a Java Application Programming Interface (API)

developed by Sun Microsystems in partnership with other companies to allow Java

programs deal with time-based media, especially audio and video (Sun, 99). Time-based

media can be defined as any data that changes meaningfully with respect to time. It is

also referred to as streaming media, since it is delivered in a steady stream of packets that

must be received and processed within a particular timeframe to produce acceptable

results.

JMF 1.0, the 1998 version, supports playback of several media types and RTP

stream reception. JMF 2.0 is being developed by Sun and IBM, and is currently in public

beta testing. JMF 2.0 provides media capture functionality, file saving and transmission

of RTP streams, together defining a plug-in API that is intended to enable developers to

customize and extend JMF functionality. JMF 2.0 early access version was released in

38

June 1999. The beta version was released in August 1999 and the final release is being

expected in Fall 99. This chapter was written based on JMF2.0 early access (Sun, 99),

and the software development was performed using JMF 1.0, 2.0 early access and 2.0

beta.

C. JMF ARCHITECTURE

The JMF API can be divided into two parts. A higher-level API, called the JMF

Presentation and Processing API, manages the capturing, processing and presentation of

time-based media. A low-level API, called the JMF Plug-in API, allows customization

and extension. Developers working on new capabilities are expected to add software

elements to the JMF Plug-in API, thereby extending JMF functionality and supporting

new media types.

JMF 2.0 uses the following basic classes/interfaces to model the high-level API:

• MediaLocator - describes the location of a media content. A MediaLocator is
closely related to an URL, but identifies stream parameters.

• DataSource – represents the media itself. A DataSource encapsulates the
media stream much like videotape does for a video movie. This class is
created based on a Media Locator.

• Player – provides processing and control mechanisms over a DataSource just
like a VCR does for a videotape. A Player can also render the media to the
appropriate output device (e.g. monitor or speakers).

• Processor – is a specialized type of Player that provides control over what
processing is done on the input media stream. Processor supports a
programmatic interface to control the processing of the media data, and also
provides access to the output data streams.

• DataSink – represents an output device other than a monitor and speaker, the
most common destinations for media output. For example, a DataSink can be
used to save the media to a file or to retransmit to a network.

39

• Manager – handles the construction of Player, Processor, DataSource and
DataSink objects.

Figure 4.1 shows some possible connections between the above elements. Part a)

is the configuration used to play a media stream. In part b) we see a processor creating a

DataSource object from another DataSource. In part c) a DataSource is passed to a

DataSink that writes it to a file. Note that multiple DataSource objects can be connected

via Processors.

A Player or Processor generally provides two standard user interface components:

a visual component and a control-panel component. These components can be accessed

by calling the getVisualComponent and getControlPanelComponent methods.

A DataSource represents a media stream which can have multiple channels of

data called tracks. For example, a Quicktime (Apple, 99) file might contain both audio

and video tracks. Demultiplexing is the process of separating out the individual tracks of

a complex stream.

Inside a Player or Processor several operations can take place. For each operation

there is a dedicated piece of software called a “plug-in.” There are five types of plug-ins:

• Demultiplexers - extract individual tracks of media from a multiplexed media
stream.

• Multiplexers - join individual tracks into a single stream of data.

• Codecs – perform media data encoding and decoding.

• Effect filters – modify the track data in some way, often creating some special
effect. They can be classified as post-processing or pre-processing effect
filters, depending on when they are applied in relation to the codec plug-in.

• Renderers – delivers the media data in a track to presentation device. For
video, the presentation device is typically the computer screen. For audio, the
presentation device is typically an audio card.

40

Figure 4.2 shows an example of a Processor internal operation. In this example

the media has one audio and one video track that are demultiplexed and processed

individually. At the end they are multiplexed again and become available as another

DataSource.

Manager provides access to a protocol-independent and media-independent

mechanism for constructing and connecting DataSources, Players, Processors and

DataSinks. A DataSource can be created by the method createDataSouce, with a

DataSource Player

Monitor

Speakers

a)

DataSource Processor DataSource

b)

DataSource DataSink File

c)

Figure 4.1 JMF High-level API Connection Examples.

41

parameter specifying either a MediaLocator or URL. A Player or Processor can be

created by the method createPlayer or createProcessor. The argument may be a

DataSource, a MediaLocator or a URL. In order to create a Player or Processor from a

MediaLocator or URL, the Manager first tries to create a DataSource. At last, for creating

a DataSink a Manager has to receive a DataSource and a MediaLocator as argument. The

DataSource represents the input to the DataSink and the MediaLocator describe the

destination of the media to be handled by the DataSink.

The JMF class hierarchy can be extended by implementing new plug-in interfaces

to perform custom processing on a track, or by implementing new DataSources, Players,

Processors or DataSinks. New plug-ins must be registered with the class PlugInManager.

DataSource DataSource

Demultiplexer
Plug-in

Track 1

Track 2

Pre-Processing
Effect Plug-in

Codec
Plug-in

Post-Processing
Effect Plug-in

Mutiplexer
Plug-in

Renderer
Plug-in

Renderer
Plug-in

Processor

Figure 4.2 Processor Decomposition (Sun, 99).

42

New Players, Processors, DataSources and DataSinks must be registered with the class

PackageManager.

D. RTP SESSION MANAGER API

The RTP Session Manager API is the part of JMF API that deals with RTP/RTCP

transmission and reception. It is contained in two packages: javax.media.rtp and

javax.media.rtp.session .

The RTPSessionManager interface is responsible for entering mandatory

conventions for creating, maintaining and closing an RTP session. It detects incoming

RTP streams, maintains a list of RTP participants and transmits outgoing streams. It also

keeps track of global statistics about the session.

Since javax.media.rtp.session.RTPSessionManager is an interface, an

implementation is provided by Sun in the file jmf.jar. The class name is RTPSessionMgr.

There is currently no source code available for this package. The following line creates

an RTPSessionManager:

RTPSessionManager mgr = new com.sun.media.RTP.RTPSessionMgr();

1. RTP Streams

RTPStream is an interface that represents a series of data packets originated from

a single host. There are two sub-interfaces of RTPStream: RTPRecvStream and

RTPSendStream. The first represents a stream that is being received from a remote

participant. RTPSessionManager creates RTPRecvStream objects automatically when

new receiving streams are detected. The second represents a stream being sent by a local

43

participant. RTPSessionManager creates new RTPSendStream objects when the method

createSendStream is called, using a DataSource object as argument.

2. RTP Participants

RTPParticipant is an interface that represents one participant in an RTP session. A

participant may be the source of zero or more streams. The method getStreams returns a

vector containing all RTPStream objects owned by the participant.

RTPParticipant has two sub-interfaces: RTPRemoteParticipant and

RTPLocalParticipant. These are only marker interfaces, with no extra functionality. The

RTPSessionManager creates a new RTPRemoteParticipant whenever a new RTCP packet

arrives that contains a CNAME that has not been seen before. The association between

the RTPParticipant object and a RTPRecvStream is done using the SSRC identifier. It is

possible to have an unassociated RTPRecvStream as the source can start sending RTP

packets before a CNAME RTCP packet is sent.

A participant that sends no data is called a Passive Participant. Otherwise it is

called an Active Participant. The method getAllParticipants of RTPSessionManager

returns a vector with all RTPParticipants. Similar methods exist to return vectors with

remote, local, active and passive participants.

3. RTCP Source Description

RTCPSourceDescription is a class that contains one description information

related to a participant, as received by the RTCP SDES packets. So, associated with a

RTPParticipant object there may be several RTCPSourceDescription objects, each

representing one description information, as CNAME, name, e-mail, location, tool, etc.

44

The method getSourceDescription of RTPParticipant returns a vector with the

RTCPSourceDescription objects related to the participant.

4. RTCP Report

Passive participants send RTCP RR packets as a feedback about the reception of

incoming streams. Active participants send RTCP SR packets that give information about

the stream being sent and also include feedback about the reception of incoming streams.

So, a SR packet includes the RR packet information. A RTCP SR or RR packet is

originated from each SSRC identifier. A participant may have more than one SSRC

identifier if it is source of more than one stream in the same session. Each SSRC is

related to one stream. In spite of it, each participant has only one CNAME. RTCP SDES

packets allow the correlation between SSRC and CNAME.

In JMF there is an interface called RTCPReport to represent both RTCP SR and

RTCP RR packets. RTCPReport has two sub-interfaces: RTCPSenderReport and

RTCPReceiverReport. RTCPReceiverReport is a marker interface. All of its functionality

is contained in RTCPReport. RTCPSenderReport extends RTPCReport to provide

methods for retrieve sender report information. The method getReports of

RTCPParticipant returns a vector containing the last SR or RR reports sent by the

participant. This method will usually return only one report: SR if the participant is active

and it sends only one stream, and RR if the participant is passive. If the participant sends

more than one stream this method will return the same number of SR reports, because

each SR report is associated to one stream/SSRC.

RTCPReport has a method called getFeedback that returns a vector of

RTCPFeedback objects. Each RTCPFeedback object conveys information about the

45

reception of one incoming stream. In other words, it represents a feedback from a SSRC

about other SSRC that originates a stream. Feedback information includes fraction lost,

cumulative number of packets lost, etc.

Figure 4.3 contains a class diagram describing the relationship between

RTPParticipant and other classes/interfaces discussed so far. This class diagram uses the

standard notation specified for the Unified Modeling Language (UML) (Booch, et al, 97).

Figure 4.3 RTPParticipant Class Diagram.

RTPRecvStream
<<Interface>>

RTPSendStream
<<Interface>>

RTCPReceiverReport
<<Interface>>

RTCPSenderReport
<<Interface>>

RTCPFeedback
<<Interface>>

RTPStream
<<Interface>>

RTCPReport
+ getFeedbacks() : Vector

<<Interface>>

0..*

1

0..*

1
contains

RTCPSourceDescription

RTPParticipant
+ getStreams() : Vector
+ getSourceDescription() : Vector
+ getReports() : Vector

<<Interface>>

0..*1 0..*1

owns

1..*

1

1..*

1

generates

*

1

*

1
has

46

5. Event Listeners

The RTP API has four types of event listeners: RTPSessionListener,

RTPSendStreamListener, RTPReceiveStreamListener and RTPRemoteListener. These

listeners provide a mechanism of event notification on the state of the RTP session and its

streams.

The RTPSessionListener interface detects events related to the RTP session as a

whole rather than a particular stream or participant. Two types of events can be posted:

NewparticipantEvent, generated when a RTCP packet from an unknown participant was

received, and LocalCollisionEvent, generated when a SSRC collision was detected

between the local participant and a remote one.

 The RTPSendStreamListener interface detects state transitions that occur on a

RTPSendStream. Four types of events can be posted:

• NewSendStreamEvent – generated when a new transmitting stream has been
created.

• ActiveSendStreamEvent – generated when the transfer of data from the
DataSource object has started arriving after a previous stop.

• InactiveSendStreamEvent – generated when the transfer of data from the
DataSource object has stopped.

• SendPayloadChangeEvent – generated when the payload type of the
DataSource object has changed.

The RTPRecvStreamListener interface detects state transitions that occur on a

RTPRecvStream. Seven types of events can be posted:

• NewRecvStreamEvent – generated when a new incoming stream has been
detected. This means that RTP data packets has been received from a SSRC
that had not previously been sending data.

47

• ActiveRecvStreamEvent – generated when the stream data packets have
started arriving after a previous stop.

• InactiveSendStreamEvent – generated when the stream data packets have
stopped arriving.

• PayloadChangeEvent – generated when a remote sender has changed the
payload type of a data stream.

• TimeOutEvent – generated when a remote sender has not sent packets for a
while and can be considered timed-out. A time-out has the same effect as if
the participant has sent the RTCP BYE packet.

• RecvStreamMappedEvent – generated when a recently created stream has
been associated with a participant after the first RTCP packet has been
received.

• AppEvent – generated when an RTCP APP packet has been received.

The RTPRemoteListener interface detects events related to RTCP control

messages received from remote participants. This interface can be used for monitoring

applications that do not need to receive each stream, but only RTCP reports. Three types

of events can be posted:

• RecvReceiverReportEvent – generated when a new RTCP RR report has been
received.

• RecvSenderReportEvent – generated when a new RTCP SR report has been
received.

• RemoteCollisionEvent – generate when two remote participants are using the
same SSRC simultaneously. Upon detecting the collision, both remote
participants should start sending data with new SSRCs.

6. RTP Media Locator and RTP Session Address

RTPMediaLocator is a class that stores information about the session address and

other settings used in a session like TTL and SSRC. The format is similar to an URL.

The RTP MediaLocator string is of the form:

- rtp://address:port[:SSRC]/content-type/[TTL]

48

Optional parameters are enclosed in brackets. Address is the IP address of the

session. Port is the port number used for RTP packets. It must be an even number

according RFC1889. SSRC is optional. Content-type can be either “audio” or “video.”

TTL is the time-to-live, also optional. The string above is used to create a

RTPMediaLocator object. If the media locator is invalid a MalformedRTPMRLException

will be thrown.

The class RTPMediaLocator has several methods to retrieve the above

information about a session. For example, the method getSessionAddress returns a string

with the IP address and the method getSessionPort returns an integer with the RTP port

number. However, to create a session and instantiate a RTPSessionManager under JMF,

another object has to be created first: an RTPSessionAddress.

RTPSessionAddress is a class that encapsulates a pair of multicast addresses, each

constituting of an IP address and a port number. One multicast address is used by RTP

and the other by RTCP. (In fact, this definition of a RTPSessionAddress is too broad,

because RFC1889 says that the RTCP multicast address must have the same IP address

and a immediately higher port with relation the RTP address.) Also, RTP port must be

even by RFC1889.

In order to create a RTPSessionAddress object for representing a session address,

two InetAddress objects are required as arguments, one for RTP and other for RTCP. The

InetAddress class is part of the java.net package and encapsulates an IP address. The

static method getByName can create a InetAddress object given a string with the IP

address. Figure 4.4 contains a sequence diagram that describes the creation of a

RTPSessionAddress object.

49

7. RTP Session Manager

After creating an empty RTPSessionManager object as described in item C), a

RTPSessionManager must be initialized by calling the method initSession. The required

parameters are:

• The local IP address as a RTPSessionAddress object. This object can be
created by calling the RTPSessionAddress constructor with no arguments.

• An array of RTPSourceDescription objects containing information about the
local participant.

• The fraction of the bandwidth to be allocated to RTCP. RFC1889
recommends 5% of the RTP bandwidth.

RTPMedia
Locator

user program

create(String mediaLocator)

address = getSessionAddress()

port = getSessionPort()

InetAdress RTPSession
Address

destaddr = getByName(address)

sessaddr = create(destaddr, port, destaddr, port + 1)

Figure 4.4 RTPSessionAddress Creation UML Sequence Diagram.

50

• The fraction of the RTCP bandwidth to be allocated to Sender Reports.
RFC1889 recommends 25% of the RTCP bandwidth.

At this moment the RTPSessionManager is still not active. The method

startSession must be called in order to cause RTCP reports be generated and callbacks to

the several listeners to be made. This method must be called prior to the creation of any

streams on a session. The required parameters are:

• The session address as a RTPSessionAddress object.

• The time-to-live (TTL)

• A RTPEncryptionInfo object if any encryption is desired.

8. Receiving and Presenting RTP Media Streams

After RTPSessionManager has been started, any receiving stream will

generate a RTPRecvStream object and a NewRecvStreamEvent event. In the update

method of the interface RTPRecvStreamListener, the RTPRecvStream object can be

obtained by the method getRecvStream of NewRecvStreamEvent. By retrieving the

DataSource from the RTPRecvStream object and passing it to the Manager we can create

a Player for the received stream. The class PlayerWindow, supplied by Sun, receives a

Player, plays back the media, audio or video, and creates a control window. Figure 4.5

contains a collaboration diagram describing the sequence above. This collaboration

diagram uses standard notation for showing logical relationship between instantiated

objects, as specified by UML (Booch, et al, 97).

51

9. Transmitting RTP Streams

RTP stream can be transmitted by passing a DataSource object to the Session

Manager using the method createSendStream. As a DataSource can contain multiple

streams/tracks, an index of the stream must be specified. The DataSource is usually

obtained as an output of a Processor. In this case the Processor has to generate RTP-

encoded data because the Session Manager does not perform that function. So each track

to be transmitted has to be set to an RTP-specific format. The method setFormat of the

TrackControl interface allows a Processor to set the format of a track. If the format can

not be applied to the track, an IncompatibleFormatException is thrown.

Figure 4.5 RTP Media Presentation Collaboration Diagram. Numbered
arrows indicate the sequence of method calls occurring between objects.

RTPRecvStreamListener

event: NewRecvStreamEvent

stream:RTPRecvStream

Manager PlayerWindow

2: stream = getRecvStream()

3: ds = getDataSource()

4: player = createPlayer(ds)

5: create(player)

1: update(event)

52

If the physical source of the stream is intended to be camera or microphone, a

CaptureDeviceInfo object must be created by using the method getDevice of

CaptureDeviceManager. The argument passed to the method getDevice is a Format

object, which describes a media format. The CaptureDeviceManager searches for a

device in the system that supports the desired format. The method getLocator of

CaptureDeviceInfo returns a Media Locator that can be used to create a Processor.

Figure 4.6 contains a UML collaboration diagram that describes a JMF procedure

to capture the media and transmit it in a RTP session.

CaptureDevice
Manager

di:CaptureDeviceInfo

Manager

proc : Processor

tc:TrackControl

:RTPSessionManager

1: di = getDevice(format)

2: loc = getLocator()
3: proc = createProcessor(loc)

4: tc = getTrackControls()

6: ds = getDataOutput()

5: setFormat(RTP_format)
7: createSendStream(ds)

 Figure 4.6 Media Capture and Transmission Collaboration Diagram.

53

10. RTP Statistics

JMF maintains several statistics about the RTP session and its streams. Statistics

about the session as a whole are obtained through the RTPSessionManager by the

methods getGlobalTransmissionStats and getGlobalReceptionStats. These methods

retrieve GlobalReceptionStats and GlobalTransmissionStats objects respectively, which

have methods to get each statistic. Individual stream statistics are maintained within

RTPSendStream and RTPRecvStream objects by the RTPTransmissionStats and

RTPReceptionStats interfaces. Figure 4.7 contains a UML class diagram showing the

classes mentioned above.

RTPRecvStream
+ getSourceTransmissionStats()

<<Interf ace>>

RTPTransmissionStats
<<Interf ace>>

1

1

RTPSendStream
+ getSourceReceptionStats()

<<Interf ace>>

RTPReceptionStats
<<Interf ace>>

1

1

has has

1

1

1

1

RTPStream
<<Interface>>

GlobalReceptionStats
<<Interf ace>>

RTPSessionManager
+ getGlobalTransmissionStats()
+ getGlobalReceptionStats()
+ getSendStreams() : Vector
+ getRecv Streams() : Vector

<<Interf ace>>

0..*

1

11

GlobalTransmissionStats
<<Interf ace>>

1

1

manages

1

0..*

mantains

mantains

1 1

1

1

Figure 4.7 RTP Statistics Class Diagram.

54

D. SUMMARY

The Java Media Framework (JMF) architecture is intended to support multimedia

in a variety of applications. It is based in a high level API, containing generic classes to

capture and present media, and a low-level API to allow customization and extension.

The RTP API supports RTP transmission and reception, as well as retrieval of RTP

statistics. Future work on JMF can include the transmission of time-based media other

than audio and video, such as the Distributed Interactive Simulation (DIS) protocol and

other behavior-based streams.

55

V. DESIGN AND IMPLEMENTATION OF THE

RTPMONITOR APPLICATION

A. INTRODUCTION

This chapter covers the functionality and class design of the program developed

as the main goal of this thesis, called rtpMonitor. rtpMonitor is a Java application that

presents and records RTP statistics about a single RTP session. It can also present the

media being received, either audio or video, by launching audio/video playback windows.

All Unified Modeling Language (UML) diagrams in this chapter conform to the UML

Specification (Booch, 97) and were prepared using the Java to UML facilities of

Rational Rose 98i (Rational, 99).

B. RTPMONITOR FUNCTIONALITY AND INTERFACE

This section contains a summary of the rtpMonitor functionality. Additional

information can be found in the Appendix B, the rtpMonitor User Manual.

1. Graphical User Interface (GUI)

Figure 5.1 shows the rtpMonitor main window. In the “Bookmark” menu, the user

can select, add or delete a bookmark related to the session name/address. In the

“Preferences” menu the user can select whether the monitor will participate in the

session, play streams and/or record statistics. The user can also be selected the duration of

the monitoring session, the recording interval and the presentation interval. In the

“Output files” menu the user can launch an external viewer to see the contents of the

statistic files generated by the program.

56

The upper part of the window contains the session address, according the

RtpMediaLocator format and the session name. The user enters the session name when a

new bookmark is inserted. This name does not necessarily have any relation with the

session name of the Session Description Protocol (SDP) announcements. The rest of the

window contains the current RTP statistics.

2. Statistics Display

The program periodically displays the following information:

• Global statistics: general reception information about the whole session.

• Stream statistics: about the reception of a single stream.

Figure 5.1 rtpMonitor Main Window.

57

• Feedback: the RTCP Receiver Report information from all participants about
the stream being monitored.

3. Statistics Recording

rtpMonitor can record statistics in text files using a recording interval defined by

the user. Several files are created and managed to simplify further retrieval. There are

files to hold data from the last five minutes, previous five minutes, last hour, previous

hour and different dates. Multiple file sizes and periodicities are employed to avoid

excessive file sizes when performing extended monitoring. File name conventions are

presented in Appendix A.

4. Media Presentation

rtpMonitor can present the incoming video stream on the computer screen or the

incoming audio streams on the computer speakers. This option is selected in the

“Preferences” menu. In case of video, each stream is presented in a separate window. In

case of audio, a toolbar window is opened to allow audio controls (such as the mute

function). The launched applications are part of the JMF API.

5. Command Line Operation

If the program is called with any argument in the command line the GUI will not

be launched. In this case the session address and preferences must be passed by the

command line.

58

The following command line is an example of invocation of the rtpMonitor to

record statistical data and present RTP session streams during a period of 24 hours:

 java org.web3d.vrtp.rtp.RtpMonitor rtp://224.120.67.46/64542/12
 -play -record -e 24

Using the command line version of rtpMonitor no statistics are sent to the

console. A monitoring session can be stopped by pressing “Crtl-C”.

 C. RTPMONITOR CLASS DESIGN

The rtpMonitor class design goal was to create a set of basic classes that could

perform the RTP monitoring tasks with minimal access from user applications to the Java

Media Framework API. Figure 5.2 contains a data flow diagram showing the exchange of

data (statistics, settings and commands) between classes in rtpMonitor. Each bubble in

the diagram will be discussed in the remainder of this session. Appendix C contains the

rtpMonitor Javadoc, and Appendix D contains the rtpMonitor source code.

1. RtpMonitorManager and RtpUtil

The RtpMonitorManager class is the main interface between a user application

and JMF. It performs the following functions:

• Creates and starts a session, represented by a RTPSessionManager object in
JMF.

• Records session statistics in files.

• Presents (i.e. plays) incoming media streams.

59

RtpMonitorManager does not have methods to retrieve each single statistic in an

RTP session. If an application needs access to individual statistics, e.g. for display

purposes, it is necessary to retrieve the RTPSessionManager object and use its methods to

get the desired set of statistics.

Figure 5.2 RTPMonitor Data Flow Diagram.

JMF 2.0 API

RtpMonitor
Manager and

RtpUtil

RecordTask
and

FileCatalog

Disk statsNetwork

RtpPlayer
Window

Audio or Video

RtpMonitor RtpMonitorCL

RtpMonitor
GUI

DOS/UNIX
prompt

60

The following parameters are necessary for instantiating a new

RtpMonitorManager object:

• The session address string, e.g. rtp://224.2.134.67:50980/127

• A Boolean variable indicating if the statistics are to be recorded on files.

• A Boolean variable indicating if the incoming streams are to be played.

• A Boolean variable indicating if the monitor will actively participate in the
session (i.e. send RTCP packets).

During instantiation, RtpMonitorManager creates a RTPSessionManager object in

JMF. Figure 5.3 shows a UML sequence diagram representing the steps taken by

RtpMonitorManager in creating and initializing the session manager. Figure 5.4 shows a

class diagram of the classes related to RtpMonitorManager.

RtpUtil is a class that has only static methods for performing some extra

functionality to JMF. For example, there is a method to return the username given a

RTPParticipant object.

2. RecordTask and FileCatalog

RecordTask is a class used by RtpMonitorManager objects to write the statistics

periodically to disk. It is created as a separate thread that waits for a fixed period of time

after writing data to disk. This class writes data to the file called

"statisticsLastReport.txt” that contains the last single report only. The

FileCatalog class is actually responsible for transferring data to other files as well (last

five minutes, last hour, and so on).

61

3. RtpPlayerWindow

RtpPlayerWindow is a class used to create a window for playing an audio/video

stream. It is a subclass of PlayerWindow, adding the capacity of modifying the window

name. Both classes were developed by Sun. RtpPlayerWindow came with JMF1.1

sample code and PlayerWindow is in the file jmf.jar.

Figure 5.3 RTPSessionManager Initialization UML Sequence Diagram.

 : RtpMonitorManager : RtpMediaLocator InetAddress : RtpSessionAddress :RTPSessionMgr

create(locatorString)

address = getSessionAddress()

port = getSessionPort()

destaddr = getByName(address)

sessaddr = create(destaddr, port, destaddr, port + 1)

create()

init(...)

start(sessaddr, ttl, ...)

62

Figure 5.4 RTPMonitorManager UML Class Diagram.

Manages the transfers
between the several
output files.

It is a new thread.
Records the last
report.

From JMF
API.

FileCatalog

+ FileCatalog()
+ update()
+ concatenate()
+ saveDateRef()
+ retrieveDateRef()

(from rtp)

RTPSessionMgr

From JMF
API.

PlayerWindow
(from ui)

RtpMediaLocator
(from rtp)

RtpSessionManager
(from session)

<<Interface>>

RtpSessionAddress
(from session)

RecordTask

+ RecordTask()
+ exit()
+ run()
- recordGlobalStats()
- recordStreamStats()
- recordFeedbacks()

(from rtp)

1

1

1

1

uses

1

1

1

1

creates

RtpPlayerWindow

+ RTPPlayerWindow()
+ Name()

(from rtp)

RtpMonitorManager

+ RTPMonitorManager()
+ update()
+ close()
+ getMediaLocator()
+ getSessionManager()
+ getSessionAddress()

(from rtp)

1

1

1

1

creates

11 11

creates

1

1

1

1

creates

1

1

1

1

creates

*

1

*

1

creates

From JMF
API.

63

4. RtpMonitor

The main RtpMonitor class extends a Frame and implements the rtpMonitor

Graphical User Interface (GUI). RtpMonitor and RtpMonitorCommandLine can be

considered classes in the application level. They use the services of RtpMonitorManager

to provide some user level functionality. RtpMonitor has the following functions:

• Collects user preferences. It uses the ModifyPreference class as the dialog
box.

• Selects, adds and deletes bookmarks. It uses the SelectBookmark,
AddBookmark and DeleteBookmark classes as dialog boxes.

• Displays statistics periodically. It creates a DisplayTask object, which is a
new thread that sleeps for a user-defined time, to call its methods for updating
the statistics on screen.

5. RtpMonitor Applet

A good idea might be to make an applet version in a web page. To do this,

security problems must be addressed, as the monitor must write data to disk and open

network connections. The implementation of an RTP Monitor version running as an

applet was left as future work.

6. RtpMonitorCommandLine

RtpMonitorCommandLine objects are instantiated by the main method of

RtpMonitor when some parameter is passed. This class performs the creation of a

RTPSessionManager object but does not present statistics on screen.

Several options can be passed by the command line call to RtpMonitor. They are

basically the same available in RtpMonitor preferences dialog.

64

D. SUMMARY

The rtpMonitor application allows the monitoring of an RTP session by

presenting session and stream statistics on screen as well as recording statistics on files

for future analysis. The program also supports Media presentation of audio and video.

The design goal of the rtpMonitor was to provide a basic set of classes for RTP

statistics recording with minimal interfacing with JMF.

65

VI. RTP MANAGEMENT INFORMATION BASE (MIB)

A. INTRODUCTION

The RTP Management Information Base (MIB) defines Simple Network

Management Protocol (SMNP) objects for managing RTP systems. This work is

produced by the Audio Video Transport (AVT) Group of the Internet Engineering Task

Force (IETF) (Baugher, et al., 99) as broad guidance for all applications collecting RTP

statistics. This chapter describes some basic concepts of the RTP MIB and compares its

attributes with the existing set of Java Media Framework used by the rtpMonitor

application.

B. NETWORK MANAGEMENT OVERVIEW

A network management system is a collection of tools for networking monitoring

and control, including hardware and software (Stallings, 97). The key elements of a

network management system are:

• Management station – the interface to the network manager.

• Agent – responds to requests for information and for taking actions. Typically,
the agent software is installed in routers, bridges, hubs and hosts.

• Management information base (MIB) – represents a collection of objects (data
variables) managed by agents.

• Network management protocol – links the management station with the
agents.

The Simple Network Management Protocol (SNMP) is the most widely

management protocol in use for TCP/IP networks. SNMPv2 (version 2) is described in

66

RFC 1901 (Case, et al., 96). SMNP include mechanisms for retrieving data from agents,

set values of objects on agents, and notify the management station of significant events.

C. RTP MIB DESCRIPTION

RTP agents running this MIB can be either RTP hosts (end systems) or RTP

Monitors. The objective is to collect statistical data about RTP sessions and its streams,

for diagnostics and management purposes. Each agent maintains a MIB that can be

queried by a Manager. Only the last updated statistic is stored in the MIB.

RTP MIB has three tables:

• rtpSessionTable – contains objects that describe active sessions at the
host, intermediate system or monitor. There is an entry in this table for
each RTP session on which packets are being sent, received and/or
monitored.

• rtpSenderTable - contains information about senders of the RTP session.
RTP sender hosts must have an entry in this table for each stream being
sent, but RTP receiving hosts do not have to maintain this table. RTP
Monitors must create an entry for each observed stream.

• rtpRcvrTable - contains information about receivers of the RTP session.
RTP receivers must create an entry in this table for each received stream.
RTP senders do not have to maintain this table. RTP monitors must have
an entry for each pair sender/receiver in the sessions being monitored.

D. COMPATIBILITY WITH JMF STATISTICS

Appendix E is a table that compares the fields in the RTP MIB tables with the

JMF statistics used by RTPMonitor. This comparison has two objectives:

• Detect what MIB statistics are not supplied by JMF. If JMF does not supply
all the required MIB data, an RTP MIB agent can not be implemented using
JMF.

• Detect what JMF statistics are not part of RTP MIB. Some of the JMF
statistics can be added to the RTP MIB.

67

The comparison was sent to the JMF and IEFT-AVT mailing lists. The comments

made by Bill Strahm, one of the authors of the RTP MIB Internet Draft are included in

the table of Appendix E. Sun Microsystems software engineers have not replied with any

comments.

E. SUMMARY

The Real-time Transport Protocol (RTP) Management Information Base (MIB)

consists of a new Internet-Draft proposed by the AVT group of the IETF to be applied in

RTP network management with SNMP.

A number of significant differences were found between JMF 2.0 (Sun, 99) and

the RTP MIB (Baugher, et al., 99). Further work will need to be performed by one or

both organizations to resolve these discrepancies.

68

THIS PAGE LEFT INTENTIONALLY BLANK

69

VII. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter presents the experimental results achieved with the rtpMonitor

application and describes problems faced during the testing phase. Furthermore, this

chapter presents the work on an RTP header for the Distributed Interactive Simulation

(DIS) protocol (IEEE, 95).

B. TEST RESULTS

The Java application rtpMonitor, described in Chapter V, was tested using the

versions 1.1.7, 1.2.1 and 1.2.2 of the Java Development Kit (JDK), in combination with

versions 1.0, 2.0 Early Access, and 2.0 Beta of the Java Media Framework. JMF Beta has

three subversions available:

• Pure Java: includes binaries written entirely in the Java programming
language that can be installed on any operating system supported by the Java
platform.

• Solaris Performance Pack: an optimized version for the Solaris platform that
includes binaries for this operating environment.

• Windows Performance Pack: an optimized version for the Windows platforms
that includes binaries for this operating environment.

rtpMonitor was tested only in Windows NT platforms using the Windows

Performance Pack. The program was tested in all its functionality, with special emphasis

on the recording capabilities. It proved to be robust, running continuously for the

maximum allowed session duration (one week) several times. It has generated correct

output files of more than 40 Mbytes for a single session.

70

C. OBSERVED PROBLEMS

Several errors (i.e. software bugs) were detected in JMF 1.0 through the

development of rtpMonitor. The following errors were reported in the JMF mailing list

and were corrected in JMF2.0 Early Access:

• The number of lost PDU in the stream data was usually wrong. It returned a
high number of lost PDU, even greater than the actual number of packets sent
by the source.

• When a non-participating option had been selected the information about the
active and passive participants was inconsistent. Usually no participants were
presented even though they might have existed.

• Individual video windows could not be closed.

• After a session had been stopped and a new session had been initiated, the
global statistics about the previous session were still being considered.

In JMF 2.0 Early Access and JMF 2.0 Beta, the only observed error is related to

the Cumulative Number of Packets Lost (Packets Lost in the Feedback Area) which

returns wrong values after some time. This problem has been reported to Sun's JMF-bugs

e-mail box (jmf-bugs@sun.com) and to Sun’s JMF-interest mailing list

(jmf-interest@java.sun.com).

D. EXTENDING DIS-JAVA-VRML PDU HEADER

Protocol Data Units (PDU) currenty used by the vrtp protocol (Brutzman, 99) are

based on the Distributed Interactive Simulation (IEEE, 95) standard. As the vrtp

protocol intends to use the Real-Time Transport Protocol as the transport protocol, an

RTP Header should be added to the existing DIS PDU. Although such a modification is

no longer strictly compliant with DIS over-the-wire formats, it nevertheless provides and

interesting opportunity for research and testing.

71

As a product of this thesis, a new Java class for extending the DIS PDU with RTP

header information was created. This class is specifically designed to be part of the DIS

package (mil.nps.navy.dis) used by the DIS-Java-VRML application, a component

of the vrtp protocol (Brutzman, 99). This class was named RtpHeader. Appendix F

contains the RtpHeader Javadoc and Appendix G contains the RtpHeader source code.

The RtpHeader class was briefly tested during the period of this thesis. Client

software automatically discriminates among DIS PDUs with and without RTP headers.

This is an excellent result. Further testing is required as a future work.

E. SUMMARY

 The rtpMonitor application has successfully been tested with different versions of

the Java Development Kit (JDK) and Java Media Framework (JMF). The program

proved to be robust in several long-term monitoring sessions. Despite most JMF

problems have been solved in version 2.0 Early Access, additional fix should be done.

A new header for the Protocol Data Units (PDU) of the DIS-Java-VRML

application was developed and initial test produced excellent results.

72

THIS PAGE LEFT INTENTIONALLY BLANK

73

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. RESEARCH CONCLUSIONS

The RTP monitor application has been successfully implemented using Java

Media Framework (JMF). The monitor can be applied to help detecting problems in RTP

based multicast session by adding statistics recording capabilities, not available in the

existing individual conference applications. The presentation of RTP statistics and

feedback reports in a single screen is also a good feature for on-line monitoring. The

RtpMonitor class package can be used by future RTP applications, as a simple means to

record statistics with no direct access needed to JMF resources. This is an important new

capability, since core Java classes do not provide access to IGMP (Deering, 89) packets

on the network layer and would otherwise require additional programming of native code

(e.g. C source code) via the Java Native Interface (JNI) (Sun, 99) to achieve RTCP

capabilities.

B. RECOMMENDATIONS FOR FUTURE WORK

A number of excellent opportunities for future work are now possible.

1. Participants Information

RTCP Session Description Reports convey several data about each participant, as

name, e-mail and tool being used. This information can be added to RTPMonitor for

presentation and recording purposes. JMF contains the necessary classes and methods to

set, send and retrieve this data.

74

2. Extensible Markup Language (XML) Recording

rtpMonitor records the RTP session data as text files. The use of Extensible

Markup Language (XML) (Word Wide Web Consortium, 99) for recording the data

would allow an easier data retrieval. Java-based XML parsers are available and can

provide an efficient way to read and write Java data structures as XML documents and

vice-versa.

3. Recorded Data Analysis and Presentation

A tool to retrieve remotely (or receive) the rtpMonitor output file statistics is

needed. It should be able to present the each individual data in a graphical format,

covering a period of time defined by the user. Again XML provides browsing options for

automatic presentation of such data by any web browser.

4. Session Description Protocol (SDP) Reception

The Session Description Protocol (SDP) is intended for describing multimedia

sessions for the purposes of session announcement, session invitation, and other forms of

multimedia session (IETF, 98). In rtpMonitor the user has to enter the RTP session

address. Future work needs to add SDP reception capability to simplify starting a

monitoring session and allowing the detection of ongoing sessions, in addition to the

current approach.

5. RtpMonitor Activation from SDR

Session Directory (SDR) is a session directory tool designed to allow the

advertisement and joining of multicast conferences on the MBone (UCL, 99). It is

75

possible to launch external application from SDR by modifying some of the SDR

configuration files. Providing a plug-in file to SDR might result in an easier activation of

the rtpMonitor application.

6. JMF Extensibility for Other Media

Java Media Framework (JMF) distribution comes with a set of concrete classes to

implement the RTP transmission, reception and playback of audio and video. However,

the extension of JMF to support other types of media is highly desirable. An important

area of future work is the implementation of simulation data transmission and reception

using the RTP API of Java Media Framework. This work will have direct application in

the vrtp streaming behaviors stack.

 7. Automated Network Monitoring of RTP Streams for VRTP.

The rtpMonitor class library can be integrated with the vrtp protocol to allow the

automatic monitoring capability in vrtp sessions. For this purpose the rtpMonitor library

must be updated to support transmission statistics and direct activation by vrtp

components. This is a good area of study for agent-based network monitoring, diagnosis

and problem correction.

8. Design Patterns Course in Computer Science Curriculum

Design Patterns study helps to solve recurring design problems by using common

adopted solutions. Furthermore, the Design Patterns nomenclature provides a precise

way of communicating design ideas among software engineers. The inclusion of a

Design Patterns course in the Computer Science and MOVES Curricula is highly

recommended.

76

THIS PAGE LEFT INTENTIONALLY BLANK

77

APPENDIX A. PREPARING UML DIAGRAMS USING RATIONAL ROSE

UML Diagrams Preparation

Rational Rose version 98i can represent the following types of UML diagrams:
• Use Case Diagrams
• Class Diagrams
• Collaboration Diagrams
• Sequence Diagrams
• Component Diagrams
• Deployment Diagrams

The program is capable of handling different models (projects), each model being a set of
basic components (classes, interfaces, actors and associations) and diagrams. For better
visualization the project is organized in a tree-like structure having the following main
branches:

• Use Case View – usually contains the Use Case Diagrams and actors
components.

• Logical View – usually contains the Class Diagrams, Collaboration Diagrams
Sequence Diagrams, Class Components and Interface Components.

• Component View – contains the Component Diagrams.
• Deployment View – contains a Deployment Diagram.

To create a new diagram, the user has to select the branch he wants the diagram in, click
with the mouse right button and select what type of diagram is to be created. A new blank
diagram is shown and the components can be created and placed on the diagram by
selecting the appropriate component in a tool bar and clicking in the place the component
must be positioned in the diagram. Depending on the type of the component different
information should be provided. By right clicking on a component a pull-down menu is
shown and the user can invoke the component specification as long as the option-setting
feature.

Reverse Engineering of Java Source Code

Reverse engineering is the process of creating or updating a model by analyzing Java
source code. As Rational Rose reverse engineers each .java or .class file, it finds the
classes and objects in the file and includes them in the model.

78

To reverse engineer all or part of a Java application:

1. If you are updating an existing model, open the model, otherwise create a new
model.

2. On the Tools menu, point to Java, and then click Reverse Engineer.

3. From the directory structure , select the classpath setting and folder where the
files you’re reverse engineering are located. (If the list is empty, check your classpath.
For details, see How Rose J Models the Classpath and Extending the Java Classpath .)

4. Set the Filter to display the type of the Java files whose code you want to reverse
engineer (.java or .class files).

5. Do one of the following to place the Java files of the type you selected into the
Selected Files list:

• In the File list box, select one or more individual files and click Add.

• Click Add All

• Click Add Recursive

6. Select one or more files in the Selected Files box or click Select All to confirm the
list of files to reverse engineer.

7. Click Reverse to create or update your model from the Java source you specified.
An error dialog displays, if any errors occur during reverse engineering.

8. Check the Rose Log for a listing of any errors that might have occurred.

The procedure above is described in the Rational Rose Help. An additional requirement
for reverse engineering of Java code is that the JDK API definitions must be available by
adding the file c:\jdk1.2.2\jre\lib\rt.jar to the classpath.

Using the reverse engineering feature, Rational Rose will import from Java code all
classes, interfaces and associations, but the diagrams are not automatically generated.

79

APPENDIX B. RTPMONITOR USER MANUAL

rtpMonitor User Manual
version 1.0

Contents:
1. Execution
2. Defining a session
3. Session Bookmarks
4. Preferences
5. Starting a session
6. Statistics
7. Stopping a session
8. Recording monitoring data
9. Using the monitor without GUI
10. Wrong behaviors and results (bugs)
11. Running the program in other directory
12. Reinstallation recommendations

80

1. Execution

a) In the command line type:
cd \vrtp\rtpMonitor
java org.web3d.vrtp.rtp.RtpMonitor

b) or run the batch file rtpMonitor.bat in the c:\vrtp\rtpMonitor directory. There is a
Windows shortcut to this file in the same directory. This shortcut can be copied to the
Desktop to create an icon for the rtpMonitor program.
Using this call with no arguments the GUI version of the program will be executed. The
following window is presented:

2.

81

Defining a session

In the session box enter the session address/port/ttl as in the example below:

rtp://224.2.125.60:55690/127

where :

Multicast IP address: 224.2.128.60
RTP port: 55690
TTL : 127

3. Session Bookmarks

As an option to writing the session address, it is possible to select a session bookmark.
The program already comes with some pre-defined session bookmarks. Bookmarks can
be added and deleted.

82

The option "Select" displays a window with the pre-defined session bookmarks. Click
over the desised session to select it.

The option "Add" allows the insertion of a new session bookmark. This option is enabled
only when a session has been started. The session address is the session of the current
session. The session name will be the bookmark name.

83

The option "delete" allows the deletion of a bookmark. A window with the existing
bookmarks will be presented and the user can select the bookmark to be deleted and click
the "Delete" button.

4. Preferences

Before starting to monitor a session, the user should set up the program preferences. The
menu "Preferences" allows the verification and modification of the program preferences.
Selecting Preferences -> Modify the following window will be presented:

84

The options are:

• Send RTCP packets checkbox: defines if the monitor will participate in the
session, sending RTCP packets.

• Play incoming media checkbox: defines if the monitor will play the received
streams (audio or video). For video, a new playing window will be created for
each active participant stream. For audio, only one playing window will be
created.

• Record statistics checkbox: defines if the monitor will record the session statistics
in files.

• Record Interval textbox: the user can enter the interval between recorded data, in
seconds (default = 30 sec).

• Presentation Interval textbox: the user can enter the interval between data updates
on screen, in seconds (default = 5 sec).

• Monitoring Period choicebox: allows the user to specify the duration of the
monitoring session. After the time is over the program will exit automatically.
The maximum allowed duration is one week (default = 1 hour).

• External viewer textbox: defines an external text editor that will be called to
present the output files generated by the monitor (default = MS Windows
Wordpad).

The selected preferences will be saved on file and will be available in the next time the
program is executed.

5. Starting a session

After entering the session address and the desired option, the user can click on the start
button to start a monitoring session. If the supplied session address is invalid or if any
other problem in establishing a session occurs an error message will be displayed in the
feedback text area.

6. Statistics

The program displays the following types of information about the session:

• Global statistics: general information about the whole session.
• Active Participants: the username of the participants actually sending data

streams.
• Passive Participants: the username of the participants that do not send any stream.
• Stream: the stream that is currently being monitored. That stream can be changed

in a session with multiple incoming streams by clicking in the "change" button
and selecting another stream in the stream selection box.

• Feedback: that display area presents the RTCP feedback data related to the
selected stream. Usually the participants in the session send feedback data about
all streams.

85

7. Stopping a session

Clicking the "stop" button can stop a session. After stopping a session, the user is allowed
to change the session address and preferences before starting monitoring again.

8. Recording monitoring data

A new subdirectory is created for each session address, with the following name:
session [IPaddress] port [port number]

Inside this subdirectory several files will be generated and updated during a recording
session. They are:

• statisticsHeader.txt: contains the description of the fields being stored.
• statisticsLastFiveMinutes.txt: contains the last five minutes block of statistics.
• statisticsPreviousFiveMinutes.txt: contains the previous five minutes block of

statistics.
• statisticsLastHour.txt: contains the last hour block of statistics.
• statisticsPreviousHour.txt: contains the previous hour block of statistics.
• statisticsDateMM-DD-YYYY: contains statistics taken in described date.
• statisticsLastReport.txt – contains the last single report.

There is also a file called LastDateRef.txt, which contains the last monitoring date for
that session. It is possible to see some of these files using the menu "File".

86

The external viewer defined in the preferences will be called to present the output files.
These options can be executed during a monitoring session. Below is an example of the
Last five minutes file using MS Windows WordPad editor as an external viewer. The
format of the data is stored in the file statisticsHeader.txt, also shown below.

87

Each line of data is preceded with a header indicator (D1, D2 or D3), which indicates the
line of the statisticsHeader file that contains the description of the data being stored (H1,
H2 or H3).

88

9. Using the monitor without GUI

The program can be executed without the GUI (no statistics are presented) by passing the
session address and options data via the command line. The format is:

java org.web3d.vrtp.rtp.RtpMonitor sessionAddress [options]

The options are:
-part : the monitor participates in the session (sends RTCP packets as a receiver in
the session)

-play : the monitor play streams

-record : the monitor records statistics

-i nnn : nnn defines the recording interval in seconds (default 30s)

-e ppp : ppp defines the monitoring duration in hours (default: 168 hours = 1
week)

-help: displays the options on the console.

Example: java org.web3d.vrtp.rtp.RtpMonitor
rtp://224.120.67.46/64542/127 -play -record -e 24

Action: runs the program for monitoring the session in the IP address 224.120.67.46,
port 64542, with TTL = 127. It does not participate in the session, but plays the incoming
streams and records statistics on files. The recording interval will be 30 seconds and the
monitoring duration will be 24 hours.
To stop the program press <Ctrl-C->

10. Wrong behaviors and results (bugs)

Several early bugs were related to JMF1.1 and were corrected in JMF2.0 Early Access. A
new bug was observed in JMF 2.0 Early Access: the Cumulative Number of Packets Lost
(Packets Lost in the Feedback Area) is returning wrong values after some time. This
problem was reported to Sun's JMF-bugs list in 08-Jun-1999, but it is still present in
JMF2.0 Beta.

89

11. Running the program in other directory

To run the program in another directory copy the files "bookmarks.txt" and "Header.txt"
to the new directory. Then run rtpMonitor from this directory.
Example:

copy bookmarks.txt c:\Mydir
copy Header.txt c:\Mydir
cd \Mydir
java org.web3d.vrtp.rtp.RtpMonitor

12. Reinstallation recommendations

In order to continue using the previous bookmarks and preferences, the files
"bookmark.txt" and "preferences.txt" in the directory "\vrtp\rtpMonitor" should be saved
and restored after the new installation.

To reinstall the program it is recommended the deletion of the following directories:
 - \vrtp\javadoc\rtpMonitor
 - \vrtp\org\web3d\vrtp\rtp
 - \vrtp\rtpMonitor

90

THIS PAGE LEFT INTENTIONALLY BLANK

91

APPENDIX C. RTPMONITOR JAVADOC

The rtpMonitor Javadoc is available at:

http://www.web3D.org/WorkingGroups/vrtp/javadoc/rtpMonitor/index.html

137

APPENDIX D. RTPMONITOR SOURCE CODE

package org.web3d.vrtp.rtp;

import java.awt.*;
import java.awt.event.*;
import java.util.*;

/**
 * A Dialog to display information about the program
 * e.g. version, date
 * <P>
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class About extends Dialog {

 /**
 * Constructor.
 * <P>
 * @param parent the parent frame
 */
 public About(Frame parent){
 super(parent, "About" , true);
 setSize(270 , 200);
 setLayout(null);
 setBackground(Color.lightGray);

 addWindowListener(new CloseWindow());

 Label versionLabel = new Label("rtpMonitor version 1.0");
 versionLabel.setBounds(20, 30, 150, 25);
 add(versionLabel);

 Label versionDateLabel = new Label("Version date: 30 August 1999");
 versionDateLabel.setBounds(20, 60, 180, 25);
 add(versionDateLabel);

 Label npsLabel = new Label("Naval Postgraduate School");
 npsLabel.setBounds(20, 90, 150, 25);
 add(npsLabel);

 Label vrtpLabel = new Label("virtual reality transfer protocol (vrtp)");
 vrtpLabel.setBounds(20, 120, 200, 25);
 add(vrtpLabel);

 Label siteLabel = new Label("http://www.web3d.org/WorkingGroups/vrtp/");
 siteLabel.setBounds(20, 150, 240, 25);
 add(siteLabel);
 }

} // end of class About

138

package org.web3d.vrtp.rtp;

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;

/**
 * The Dialog to add a session bookmark.
 * <P>
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class AddBookmark extends Dialog
 implements ActionListener{

 Vector sessionAddressVec, sessionNamesVec;
 Label sessionAddLabel, sessionAddRealLabel, sessionNameLabel;
 TextField sessionNameText;
 Button addButton, cancelButton;
 RtpMonitor theParent;

 /**
 * Constructor.
 * <P>
 * @param parent the parent frame
 */
 public AddBookmark(Frame parent){
 super(parent, "Add Bookmark" , true);
 setSize(350 , 170);
 setLayout(null);
 setBackground(Color.lightGray);

 addWindowListener(new CloseWindow());

 theParent = (RtpMonitor) parent;

 loadBookmarks();

 sessionAddLabel = new Label("Session Address:");
 sessionAddLabel.setBounds(10, 40, 100, 25);
 add(sessionAddLabel);

 sessionAddRealLabel = new Label(theParent.sessionText.getText());
 sessionAddRealLabel.setBounds(115,40, 230, 25);
 add(sessionAddRealLabel);

 sessionNameLabel = new Label("Session Name");
 sessionNameLabel.setBounds(10, 80, 100, 25);
 add(sessionNameLabel);

 sessionNameText = new TextField(theParent.sessionNameText.getText());
 sessionNameText.setBounds(110, 80, 230, 25);
 add(sessionNameText);

139

 addButton = new Button("Add");
 addButton.setBounds(100,130,60,25);
 addButton.addActionListener(this);
 add(addButton);

 cancelButton = new Button("Cancel");
 cancelButton.setBounds(200,130,60,25);
 cancelButton.addActionListener(this);
 add(cancelButton);

 }

 /**
 * Takes action when buttons are selected.
 *
 */
 public void actionPerformed(ActionEvent e)
 {
 if(e.getSource() == addButton){
 String sessAdd = theParent.sessionText.getText().trim();
 String sessName = sessionNameText.getText().trim();
 if(!sessName.equals("")){
 sessionNamesVec.addElement(sessName);
 sessionAddressVec.addElement(sessAdd);
 saveBookmarks();
 theParent.sessionNameText.setText(sessName);
 setVisible(false);
 }
 }

 if(e.getSource() == cancelButton){
 setVisible(false);
 }
 }

 /**
 * Loads the session bookmarks from file "bookmarks.txt"
 */
 private void loadBookmarks(){

 sessionAddressVec = new Vector();
 sessionNamesVec = new Vector();

 try{
 BufferedReader input = new BufferedReader(new
 FileReader("bookmarks.txt"));
 String line;

 while((line = input.readLine()) != null){
 int pos = line.lastIndexOf("rtp://");
 if (pos != -1){
 sessionAddressVec.addElement(line.substring(pos).trim());
 sessionNamesVec.addElement(line.substring(0 , pos).trim());
 }

140

 }
 input.close();
 }
 catch (FileNotFoundException e){
 System.out.println("Add Bookmarks: " + e.getMessage());
 }
 catch (IOException e){
 System.err.println("Exception reading bookmark: " + e.getMessage());
 }

 }

 /**
 * Saves the session bookmarks to file "bookmarks.txt"
 */
 private void saveBookmarks(){
 PrintStream output;

 try {
 output = new PrintStream(new FileOutputStream("bookmarks.txt", false));

 for(int ii=0; ii < sessionAddressVec.size(); ++ii){
 output.print((String) sessionNamesVec.elementAt(ii));
 output.print(" ");
 output.println((String) sessionAddressVec.elementAt(ii));
 }

 output.close();
 }
 catch (FileNotFoundException e){
 System.out.println("Saving bookmarks : " + e.getMessage());
 }
 catch (IOException e){
 System.err.println("Exception writing bookmark: " + e.getMessage());
 }

 }

} // end of class AddBookmark

141

package org.web3d.vrtp.rtp;

import java.awt.event.*;

/**
 * This class is used to set a frame/dialog as not visible
 * when the close icon is clicked.
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class CloseWindow extends WindowAdapter {

 /**
 * set frame/dialog as not visible. This method is activated when the window
 * is closed.
 *
 */
 public void windowClosing(WindowEvent e)
 {
 e.getWindow().setVisible(false);
 }

} // end of class CloseWindow

142

package org.web3d.vrtp.rtp;

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;

/**
 * A Dialog to delete a session bookmark.
 * <P>
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class DeleteBookmark extends Dialog
 implements ActionListener{

 java.awt.List sessionNamesList;
 Vector sessionAddressVec;
 Button deleteButton, cancelButton;

 /**
 * Constructor.
 * <P>
 * @param parent the parent frame
 */
 public DeleteBookmark(Frame parent){
 super(parent, "Delete Bookmark" , true);
 setSize(250 , 300);
 setLayout(null);
 setBackground(Color.lightGray);

 addWindowListener(new CloseWindow());

 sessionNamesList = new java.awt.List(5 , false);
 sessionNamesList.setBounds(10,30,230,210);

 loadBookmarks();

 add(sessionNamesList);

 deleteButton = new Button("Delete");
 deleteButton.setBounds(50,260,60,25);
 deleteButton.addActionListener(this);
 add(deleteButton);

 cancelButton = new Button("Cancel");
 cancelButton.setBounds(130,260,60,25);
 cancelButton.addActionListener(this);
 add(cancelButton);

 }

143

 /**
 * Takes action when buttons are selected.
 *
 */
 public void actionPerformed(ActionEvent e)
 {
 if(e.getSource() == deleteButton){
 int index = sessionNamesList.getSelectedIndex();
 if(index >= 0){
 sessionNamesList.remove(index);
 sessionAddressVec.remove(index);
 saveBookmarks();
 }
 }

 if(e.getSource() == cancelButton){
 setVisible(false);
 }
 }

 /**
 * Loads the session bookmarks from file "bookmarks.txt"
 */
 private void loadBookmarks(){

 sessionAddressVec = new Vector();

 try{
 BufferedReader input = new BufferedReader(new
 FileReader("bookmarks.txt"));
 String line;

 while((line = input.readLine()) != null){
 int pos = line.lastIndexOf("rtp://");
 if (pos != -1){
 sessionAddressVec.addElement(line.substring(pos).trim());
 sessionNamesList.add(line.substring(0 , pos).trim());
 }
 }
 input.close();
 }
 catch (FileNotFoundException e){
 System.out.println("Delete Bookmarks: " + e.getMessage());
 }
 catch (IOException e){
 System.err.println("Exception reading bookmark: " + e.getMessage());
 }

 }

144

 /**
 * Saves the session bookmarks to file "bookmarks.txt"
 */
 private void saveBookmarks(){
 PrintStream output;

 try {
 output = new PrintStream(new FileOutputStream("bookmarks.txt", false));

 for(int ii=0; ii < sessionAddressVec.size(); ++ii){
 output.print(sessionNamesList.getItem(ii));
 output.print(" ");
 output.println((String) sessionAddressVec.elementAt(ii));
 }

 output.close();
 }
 catch (FileNotFoundException e){
 System.out.println("Saving bookmarks : " + e.getMessage());
 }
 catch (IOException e){
 System.err.println("Exception writing bookmark: " + e.getMessage());
 }

 }

} // end of class DeleteBookmark

145

package org.web3d.vrtp.rtp;

import javax.media.rtp.*;
import javax.media.rtp.event.*;
import javax.media.rtp.rtcp.*;

import java.awt.*;
import java.util.*;

/**
 * A class used by RtpMonitor objects to periodically launch their showStats
 * methods (screen updates).
 * <P>
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class DisplayTask implements Runnable {

 RtpMonitor myMon;
 SessionManager mymgr;
 Thread thread;
 int intervalParam;

 /**
 * Constructor. It creates a new thread of execution and calls
 * the method run().
 *
 * @param mon the RtpMonitor object that will be called back for screen
 * updates.
 * @param interval the interval between screen data updates, in seconds.
 */
 public DisplayTask(RtpMonitor mon, double interval){

 myMon = mon;
 intervalParam = (int) (interval*1000);

 thread = new Thread(this,"DisplayTask thread");
 thread.setDaemon(true);
 thread.start();

 }

146

 /**
 * This method runs continuously calling the showStats methods of RtpMonitor
 * in the proper presentation interval, until the RtpMonitor stops the
 * session.
 */
 public void run(){
 while(myMon.isMonitoring()){

 myMon.showGlobalStats();
 myMon.showParticipants();
 myMon.showStreamStats();
 myMon.showFeedbacks();

 try{
 Thread.sleep(intervalParam);
 }
 catch (InterruptedException e){}

 }
 }

} // end of class DisplayTask

147

package org.web3d.vrtp.rtp;

import java.io.*;
import java.util.*;

/**
 * A class used by RecordTask objects to organize statistics
 * in several files (five minutes, hour, and day).
 * <P>
 * This class writes to the file following files:
 * statisticsLastFiveMinutes.txt, statisticsPreviousFiveMinutes.txt,
 * statisticsLastHour.txt, statisticsPreviousFiveMinutes.txt, and
 * statisticsDateMM-DD-YYYY.txt.
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class FileCatalog{

 Calendar rightNow;
 String prefix;
 String dateRef;
 int minuteRange, hourRange;
 boolean flgFirstDataMin;
 File min5, min5last,hour, hourlast, header;

 /**
 * Constructor. It checks if there are previous data from the same session
 * and transfers these data to the correct statisticsDateMM-DD_YYYY.txt file.
 * Then it clears all "five minutes" and "hour" data files.
 * <P>
 * @param pref a string containing the directory where the data must be written
 */
 public FileCatalog(String pref){

 prefix = pref;

 // creates File objects
 min5 = new File(prefix + "LastFiveMinutes.txt");
 min5last = new File(prefix + "PreviousFiveMinutes.txt");
 hour = new File(prefix + "LastHour.txt");
 hourlast = new File(prefix +"PreviousHour.txt");
 header = new File(prefix + "Header.txt");

 // retrieves the date of last record for this session
 String lastDateRef = retrieveDateRef();

 // copies the header file to the session directory if it does not exit
 if(! header.exists()){
 concatenate(prefix + "Header.txt" , "Header.txt");
 }

148

 if(min5.exists()){

 // if there is a last five minutes file, transfers its contents to the
 // last hour file and deletes the last five minutes file
 if(lastDateRef != null){
 concatenate(prefix + "LastHour.txt" , prefix + "LastFiveMinutes.txt");
 }
 min5.delete();
 }

 // deletes the previous five minutes file if it exists
 if(min5last.exists()){
 min5last.delete();
 }

 if(hour.exists()){

 // if there is a last hour, transfers its contents to the
 // related date file file and deletes the last hour file
 if(lastDateRef != null){
 String dateFileName = new String(prefix +"Date" + lastDateRef+".txt");
 concatenate(dateFileName , prefix + "LastHour.txt");
 }
 hour.delete();
 }

 // deletes the previous hour file if it exists
 if(hourlast.exists()){
 hourlast.delete();
 }

 flgFirstDataMin = true;
 }

 /**
 * Method that will update the files, transfering data from
 * statisticsLastReport.txt to the appropriate files.
 *
 * @param time the current time as a Calendar object.
 */
 public void update(Calendar time){

 rightNow = time;

 // displays the current time on the console
 System.out.println(rightNow.getTime().toString());
 // minuteRangeNow represents a block of five minutes
 int minuteRangeNow = rightNow.get(Calendar.MINUTE) / 5;

 int hourRangeNow = rightNow.get(Calendar.HOUR_OF_DAY) ;
 String dateNow = new String((rightNow.get(Calendar.MONTH) + 1) + "-" +
 rightNow.get(Calendar.DAY_OF_MONTH)+ "-" +
 rightNow.get(Calendar.YEAR));

149

 // if it is the first report of the session
 if(flgFirstDataMin){
 minuteRange = minuteRangeNow;
 hourRange = hourRangeNow;
 dateRef = dateNow;
 saveDateRef(dateRef);
 flgFirstDataMin = false;
 }

 if(minuteRangeNow != minuteRange){

 // if it is new block of five minutes

 // appends data from the five minutes file to the last hour file
 concatenate(prefix + "LastHour.txt" , prefix + "LastFiveMinutes.txt");
 if(min5last.exists()){
 min5last.delete();
 }

 // rename last five minutes file to previous five minutes file
 min5.renameTo(min5last);
 minuteRange = minuteRangeNow;

 if(hourRangeNow != hourRange){

 // if it is a new hour

 // appends data from the last hour to the related date file
 String dateFileName = new String(prefix + "Date" + dateRef + ".txt");
 concatenate(dateFileName , prefix + "LastHour.txt");
 if(hourlast.exists()){
 hourlast.delete();
 }

 // renames the last hour file as the previous hour file
 hour.renameTo(hourlast);
 hourRange = hourRangeNow;

 // if it is a new date save the actual date in the
 // statisticsLastDateRef file
 if(! dateRef.equals(dateNow)){
 dateRef = dateNow;
 saveDateRef(dateRef);
 }
 }
 }

 // if there is not a new five minutes block just append the last report
 // to the existing last five minutes file
 concatenate(prefix + "LastFiveMinutes.txt", prefix + "LastReport.txt");

 }

150

 /**
 * Utility to concatenate two files.
 *
 * @param file1 the first file (file1 <- file1 + file2). If file1 does not
 * exits this method will copy file2 to file1.
 * <P>
 * @param file2 the file to be appended to file1.
 */
 public static void concatenate(String file1, String file2){

 try{
 FileOutputStream output = new FileOutputStream(file1, true);
 FileInputStream input = new FileInputStream(file2);
 int mybyte;
 while((mybyte = input.read()) != -1){
 output.write(mybyte);
 }

 output.close();
 input.close();

 }
 catch(FileNotFoundException e){
 System.out.println("File not found " + e.getMessage());
 }
 catch(IOException e){
 System.out.println("IOException : " + e.getMessage());
 }
 }

 /**
 * This method saves in a file a date in a string format. It is
 * used for save the date of the last report.
 * The file name is statisticsLastDateRef.txt.
 *
 * @param dater a string representing a date as DD-MM-YYYY
 */
 public void saveDateRef(String dater){
 try{
 DataOutputStream output = new DataOutputStream(
 new FileOutputStream(prefix + "LastDateRef.txt"));

 output.writeUTF(dater);
 output.close();
 }
 catch(FileNotFoundException e){
 System.out.println("File not found " + e.getMessage());
 }

 catch(IOException e){
 System.out.println("IOException : " + e.getMessage());
 }
 }

151

 /**
 * This method retrives a date in a string format from the file
 * statisticsLastDateRef.txt.
 *
 * @return string representing a date as DD-MM-YYYY
 */
 public String retrieveDateRef(){

 String result = null;

 try{
 DataInputStream input = new DataInputStream(
 new FileInputStream(prefix + "LastDateRef.txt"));

 result = input.readUTF();
 input.close();
 }
 catch(FileNotFoundException e){}

 catch(IOException e){
 System.out.println("IOException : " + e.getMessage());
 }
 return result;

 }

} // end of class FileCatalog

152

package org.web3d.vrtp.rtp;

import java.awt.*;
import java.awt.event.*;
import java.io.*;

/**
 * A Dialog to display and modify the program preferences.
 * <P>
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class ModifyPreferences extends Dialog {

 protected Checkbox recordBox, partBox, playBox;
 protected Label intervalLabel, intervalPresLabel, endLabel, viewerLabel;
 protected TextField intervalText, intervalPresText, viewerText;
 protected Choice endChoice;
 private String [] strEndsIn = { "1 hour", "2 hours", "4 hours",
 "8 hours", "12 hours", "24 hours", "2 days", "1 week"};

 /**
 * Constructor.
 * <P>
 * @param parent the parent frame
 */
 public ModifyPreferences(Frame parent){
 super(parent, "Preferences" , true);
 setSize(260 , 280);
 setLayout(null);
 setBackground(Color.lightGray);

 addWindowListener(new CloseWindow());

 partBox = new Checkbox("Send RTCP packets", true);
 partBox.setBounds(10,30,140,25);
 partBox.setBackground(Color.lightGray);
 add(partBox);

 playBox = new Checkbox("Play incoming media", true);
 playBox.setBounds(10,60,160,25);
 add(playBox);

 recordBox = new Checkbox("Record statistics", true);
 recordBox.setBounds(10,90,140,25);
 add(recordBox);

 intervalLabel = new Label("Record Interval(sec)");
 intervalLabel.setBounds(10, 120, 120, 25);
 add(intervalLabel);

 intervalText = new TextField("30.0");
 intervalText.setBounds(130,120,40,25);
 add(intervalText);

 intervalPresLabel = new Label("Presentation Interval(sec)");

153

 intervalPresLabel.setBounds(10, 150, 140, 25);
 add(intervalPresLabel);

 intervalPresText = new TextField("5");
 intervalPresText.setBounds(160,150,40,25);
 add(intervalPresText);

 endLabel = new Label("Monitoring Period");
 endLabel.setBounds(10, 180, 100, 25);
 add(endLabel);

 endChoice = new Choice();
 endChoice.setBounds(120, 180, 80, 25);
 add(endChoice);
 for(int ii=0; ii < strEndsIn.length; ++ii){
 endChoice.add(strEndsIn[ii]);
 }
 endChoice.select(0);

 viewerLabel = new Label("External viewer:");
 viewerLabel.setBounds(10, 210, 120, 25);
 add(viewerLabel);

 viewerText = new TextField("c:/Program Files/accessories/wordpad.exe");
 viewerText.setBounds(20,240,230,20);
 viewerText.setFont(new Font(null , Font.PLAIN , 10));
 add(viewerText);

 loadPreferences();

 }

 /**
 * Enables the GUI input elements
 */
 public void enableInput(){
 recordBox.setEnabled(true);
 partBox.setEnabled(true);
 playBox.setEnabled(true);
 intervalText.setEnabled(true);
 intervalPresText.setEnabled(true);
 endChoice.setEnabled(true);
 viewerText.setEnabled(true);
 }

 /**
 * Disables the GUI input elements
 */
 public void disableInput(){
 recordBox.setEnabled(false);
 partBox.setEnabled(false);
 playBox.setEnabled(false);
 intervalText.setEnabled(false);
 intervalPresText.setEnabled(false);
 endChoice.setEnabled(false);
 viewerText.setEnabled(false);
 }

154

 /**
 * Saves the preferences in the file preferences.txt
 */
 public void savePreferences(){
 try{
 DataOutputStream output = new DataOutputStream(
 new FileOutputStream("preferences.txt"));

 output.writeBoolean(partBox.getState());
 output.writeBoolean(playBox.getState());
 output.writeBoolean(recordBox.getState());
 output.writeUTF(intervalText.getText());
 output.writeUTF(intervalPresText.getText());
 output.writeInt(endChoice.getSelectedIndex());
 output.writeUTF(viewerText.getText());

 output.close();
 }
 catch(FileNotFoundException e){
 System.out.println("File not found " + e.getMessage());
 }

 catch(IOException e){
 System.out.println("IOException : " + e.getMessage());
 }
 }

 /**
 * Loads the preferences from the file preferences.txt
 */
 private void loadPreferences(){

 try{
 DataInputStream input = new DataInputStream(
 new FileInputStream("preferences.txt"));

 partBox.setState(input.readBoolean());
 playBox.setState(input.readBoolean());
 recordBox.setState(input.readBoolean());
 intervalText.setText(input.readUTF());
 intervalPresText.setText(input.readUTF());
 endChoice.select(input.readInt());
 viewerText.setText(input.readUTF());

 input.close();
 }
 catch(FileNotFoundException e){}

 catch(IOException e){
 System.out.println("IOException : " + e.getMessage());
 }

 }

} // end of class ModifyPreferences

155

package org.web3d.vrtp.rtp;

import javax.media.rtp.*;
import javax.media.rtp.event.*;
import javax.media.rtp.rtcp.*;

import java.io.*;
import java.sql.*;
import java.util.*;

/**
 * A class used by RtpMonitorManager objects to write the statistics
 * periodically to disk. It is created as a separate thread that waits for
 * a fixed period of time after writing data to disk.
 * <P>
 * This class writes data to the file called "statisticsLastReport.txt", that
 * contains only the last single report. The FileCatalog class is actually
 * responsible for transferring the data to the file
 * "statisticsLastFiveMinutes.txt" and other files.
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class RecordTask implements Runnable {

 SessionManager mgr;
 RtpMonitorManager myMon;
 Thread thread;
 boolean flgRun;
 PrintStream output;
 String dir;
 String prefix;
 String filename;
 Calendar timeNow;
 FileCatalog cat;
 int recordParam;

 /**
 * Constructor. It creates the session directory where the stats files will be
 * written. Also it creates a FileCatalog object that will organize the data in
 * several files (five minutes, hour and day).
 *
 *
 * @param mon the RtpMonitorManager that manages the monitoring session.
 * <P>
 * @param recInterval the interval between statistic samples, in seconds.
 */
 public RecordTask(RtpMonitorManager mon, double recInterval) {

 // saves parameters as internal variables
 myMon = mon;
 recordParam = (int) (recInterval * 1000);

 // gets the session manager associated with the monitoring session
 mgr = myMon.getSessionManager();

156

 // gets session address and port
 String session = myMon.getMediaLocator().getSessionAddress();
 String port =
 (new Integer(myMon.getMediaLocator().getSessionPort())).toString();

 // creates a new subdirectory for saving session statistics
 dir = new String("./session" + session.replace('.','-') + "port" +port);
 File newdir = new File(dir);
 newdir.mkdir();

 // creates file statisticsLastReport.txt
 prefix = new String(dir + "/statistics");
 filename = new String (prefix + "LastReport.txt");

 // creates a FileCatalog object
 cat = new FileCatalog(prefix);

 // executes as a thread
 thread = new Thread(this,"Record thread");
 thread.setDaemon(true);
 thread.start();

 }

 /**
 * Resets a flag that is checked each time the thread associated with this
 * object is awaken after the wait command, causing the thread to end.
 *
 */
 public void exit(){
 flgRun = false;
 }

 /**
 * Starts executing the recording and waiting until the recording interval
 * is over, in a loop, until the "exit" method is called.
 *
 */
 public void run(){

 flgRun = true;

 // runs continuously until stopped
 while(flgRun){

 try {

 // opens the last report file
 output = new PrintStream(new FileOutputStream(filename, false));

 // gets actual time
 timeNow = Calendar.getInstance();

 // records statistics on file
 recordGlobalStats();
 recordStreamStats();

157

 recordFeedbacks();

 // calls the FileCatalog object to manage the data between the
 // several files
 cat.update(timeNow);

 }
 catch (FileNotFoundException e){
 System.out.println("In RecordTask : " + e.getMessage());
 }
 finally {
 output.close();
 }
 try{
 Thread.sleep(recordParam);
 }
 catch (InterruptedException e){}

 }
 }

 /**
 * Records global statistics (lines starting with D1)
 *
 */
 private void recordGlobalStats(){

 GlobalReceptionStats stats = mgr.getGlobalReceptionStats();

 output.print("D1 ");
 output.print((new Time(timeNow.getTime().getTime()).toString()));

 output.print(' ');
 output.print(mgr.getAllParticipants().size());
 output.print(' ');
 output.print(mgr.getRemoteParticipants().size());
 output.print(' ');
 output.print(mgr.getActiveParticipants().size());
 output.print(' ');
 output.print(stats.getBytesRecd());
 output.print(' ');
 output.print(stats.getPacketsRecd());
 output.print(' ');
 output.print(stats.getRTCPRecd());
 output.print(' ');
 output.print(stats.getSRRecd());
 output.print(' ');
 output.print(stats.getBadRTPkts());
 output.print(' ');
 output.print(stats.getBadRTCPPkts());
 output.print(' ');
 output.print(stats.getMalformedSR());
 output.print(' ');
 output.print(stats.getMalformedRR());
 output.print(' ');
 output.print(stats.getMalformedSDES());

158

 output.print(' ');
 output.print(stats.getMalformedBye());
 output.print(' ');
 output.print(stats.getLocalColls());
 output.print(' ');
 output.print(stats.getRemoteColls());
 output.print(' ');
 output.print(stats.getPacketsLooped());
 output.print(' ');
 output.print(stats.getTransmitFailed());
 output.print(' ');
 output.println(stats.getUnknownTypes());

 }

 /**
 * Records stream statistics (lines starting with D2)
 *
 */
 private void recordStreamStats(){

 ReceiveStream stream;
 ReceptionStats stats;
 Participant part;
 long SSRC;
 String CNAME;

 Vector aux = mgr.getReceiveStreams();
 for(int ii = 0; ii< aux.size(); ++ii){
 stream = (ReceiveStream) aux.elementAt(ii);
 part = stream.getParticipant();
 SSRC = RtpUtil.correctSSRC(stream.getSSRC());
 if(part != null){
 CNAME = stream.getParticipant().getCNAME();
 }
 else {
 CNAME = new String("Unknown Participant");
 }
 stats = stream.getSourceReceptionStats();

 output.print("D2 ");
 output.print(CNAME);
 output.print(' ');
 output.print(SSRC);
 output.print(' ');
 output.print(stats.getPDUlost());
 output.print(' ');
 output.print(stats.getPDUProcessed());
 output.print(' ');
 output.print(stats.getPDUMisOrd());
 output.print(' ');
 output.print(stats.getPDUInvalid());
 output.print(' ');
 output.println(stats.getPDUDuplicate());
 }
 }

159

 /**
 * Records feedback statistics (lines starting with D3)
 *
 */
 private void recordFeedbacks(){

 Participant part;
 Vector reports, feedbacks;
 Report rep;
 Feedback feedbk;
 String CNAME;
 long fromSSRC, aboutSSRC;
 double fraction;
 long packetsLost, jitter;

 Vector aux = mgr.getAllParticipants();

 for(int ii = 0; ii< aux.size(); ++ii){
 part = (Participant)aux.elementAt(ii);
 CNAME = part.getCNAME();
 reports = part.getReports();
 for(int jj=0; jj< reports.size(); ++jj){
 rep = (Report) reports.elementAt(jj);
 fromSSRC = RtpUtil.correctSSRC(rep.getSSRC());
 feedbacks = rep.getFeedbackReports();
 for(int kk=0; kk < feedbacks.size(); ++kk){
 feedbk = (Feedback) feedbacks.elementAt(kk);
 aboutSSRC = RtpUtil.correctSSRC(feedbk.getSSRC());
 fraction = (feedbk.getFractionLost())/256.0;
 packetsLost = feedbk.getNumLost();
 jitter = feedbk.getJitter();

 output.print("D3 ");
 output.print(CNAME);
 output.print(' ');
 output.print(fromSSRC);
 output.print(' ');
 output.print(aboutSSRC);
 output.print(' ');
 output.print(fraction);
 output.print(' ');
 output.print(packetsLost);
 output.print(' ');
 output.println(jitter);

 }
 }
 }

 return;

 }

} // end of class RecordTask

160

package org.web3d.vrtp.rtp;

import javax.media.*;
import javax.media.rtp.*;
import java.lang.*;
import java.net.*;

/**
 * A class that represents necessary information to define
 * an RTP session, as address, port and TTL.
 *
 * <P>
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class RtpMediaLocator extends MediaLocator{

 /**
 * Defines the value of TTL if not provided.
 */
 public static final int TTL_UNDEFINED = 1;

 private String address = "";

 private int port;
 private int ttl = TTL_UNDEFINED;

 /**
 * Constructor.
 * @param locatorString Describes the session. It should have the
 * following format:
 rtp://address:port[/ttl] , where:
 * <P>
 * address -> multicast address of the rtp session
 * <P>
 * port -> port number
 * <P>
 * ttl (optional) -> time-to-live
 */
 public RtpMediaLocator(String locatorString) throws MalformedURLException
 {
 super(locatorString);

 parseLocator(locatorString);
 }

 // this method parses the locator string to get the various session data
 // as address, port and ttl
 private void parseLocator(String locatorString)
 throws MalformedURLException{

 String remainder = getRemainder();

 int colonIndex = remainder.indexOf(":");
 int slashIndex = remainder.indexOf("/",2);

161

 // gets the address
 if (colonIndex != -1)
 address = remainder.substring(2, colonIndex);
 else {
 throw new MalformedURLException(
 "RTP MediaLocator is Invalid. Must be of form rtp://addr:port/ttl");
 }

 // tests if the address is valid
 try{
 InetAddress Iaddr = InetAddress.getByName(address);
 }
 catch (UnknownHostException e){throw new MalformedURLException(
 "Valid RTP Session Address must be given");
 }

 // gets the port
 String portstr = "";
 if (slashIndex == -1)
 portstr = remainder.substring(colonIndex +1,
 remainder.length());
 else
 portstr = remainder.substring(colonIndex +1,
 slashIndex);

 // tests if the port is an integer
 try{
 Integer Iport = Integer.valueOf(portstr);
 port = Iport.intValue();
 }catch (NumberFormatException e){
 throw new MalformedURLException(
 "RTP MediaLocator Port must be a valid integer");
 }

 // gets the ttl
 if (slashIndex != -1){

 String ttlstr = remainder.substring(slashIndex+1,
 remainder.length());
 try{
 Integer Ittl = Integer.valueOf(ttlstr);
 ttl = Ittl.intValue();
 }catch (NumberFormatException e){}

 }
 }

 /** Returns the RTP Session address
 *@return String form of the RTPSession address
 */
 public String getSessionAddress(){
 return address;
 }

162

 /**
 * Returns the RTP session port.
 * @return RTP session port
 */
 public int getSessionPort(){
 return port;
 }

 /**
 * Returns the session Time-to-live.
 * @return time-to-live(TTL)
 */
 public int getTTL(){
 return ttl;
 }

} // end of class RtpMediaLocator

163

package org.web3d.vrtp.rtp;

import javax.media.rtp.*;
import javax.media.rtp.event.*;
import javax.media.rtp.rtcp.*;

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;
import java.util.*;

/**
 * The RtpMonitor Application.
 * <P>
 * This class is a frame that implements the RtpMonitor GUI. <P>
 * If any command line argument is passed the RtpMonitorCommandLine class
 * is called instead.
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class RtpMonitor extends Frame
 implements ActionListener, ItemListener {

 TextField sessionText, sessionNameText;
 TextArea activeArea,passiveArea,feedbkArea;
 Choice streamChoice;
 Button start,stop,changeStream;
 Label sessionLabel, sessionNameLabel, streamLabel, feedbkLabel;
 Label endLabel;
 Label globalStatLabel, activeLabel, passiveLabel, feedbkFieldsLabel;
 Label [] gLab;
 TextField [] gText;
 String [] gField = {"Total Bytes", "Total Packets", "RTCP Packets",
 "SR Packets", "Bad RTP Packets", "Bad RTCP Packets",
 "Bad SR Packets","Bad RR Packets", "Bad SDES Packets",
 "Bad BYE Packets", "Local Collisions",
 "Remote Collisions", "Looped Packets",
 "Failed Transmission", "Unknown Type" };
 Label [] rLab;
 TextField [] rText;
 String [] rField = {"Lost PDUs", "Processed PDUs", "MisOrdered PDUs",
 "Invalid PDUs", "Duplicate PDUs" };

 int [] endsInHours = { 1, 2, 4, 8, 12, 24, 48, 168 };
 String locator;
 boolean flgPart, flgPlay, flgRecord;
 boolean flgActive = false;
 int presInterval;
 double recInterval;
 RtpMonitorManager monMgr;
 SessionManager mymgr;
 DisplayTask dispTask;
 long SSRCtoShow;
 Hashtable streamTable;
 boolean flgUpdateStreams;

164

 Date endDate;
 MenuBar bar;
 Menu preferences, bookmarkMenu, filesMenu, helpMenu;
 MenuItem viewPref, modifyPref, selectBm, addBm, deleteBm, aboutItem;
 MenuItem last5Item, previous5Item, lastHourItem, previousHourItem, headerItem;
 MenuItem exitItem;
 ModifyPreferences modPrefDialog;
 SelectBookmark selBmDialog;
 DeleteBookmark delBmDialog;
 AddBookmark addBmDialog;
 About aboutDialog;

 /**
 * Constructor. It is called by main() if no command line argument is passed.
 * <P>
 * The constructor initializes the GUI components.
 */
 public RtpMonitor()
 {
 super ("RtpMonitor");
 setSize(780,530);
 setLayout(null);

 preferences = new Menu("Preferences");

 viewPref = new MenuItem("View");
 viewPref.addActionListener(this);
 modifyPref = new MenuItem("Modify");
 modifyPref.addActionListener(this);

 preferences.add(viewPref);
 preferences.addSeparator();
 preferences.add(modifyPref);

 bookmarkMenu = new Menu("Bookmarks");

 addBm = new MenuItem("Add");
 addBm.setEnabled(false);
 deleteBm = new MenuItem("Delete");
 selectBm = new MenuItem("Select");
 selectBm.addActionListener(this);
 deleteBm.addActionListener(this);
 addBm.addActionListener(this);

 bookmarkMenu.add(selectBm);
 bookmarkMenu.addSeparator();
 bookmarkMenu.add(addBm);
 bookmarkMenu.addSeparator();
 bookmarkMenu.add(deleteBm);

 filesMenu = new Menu("File");

 last5Item = new MenuItem("Last five minutes");
 last5Item.addActionListener(this);
 previous5Item = new MenuItem("Previous five minutes");
 previous5Item.addActionListener(this);

165

 lastHourItem = new MenuItem("Last hour");
 lastHourItem.addActionListener(this);
 previousHourItem = new MenuItem("Previous hour");
 previousHourItem.addActionListener(this);
 headerItem = new MenuItem("Header");
 headerItem.addActionListener(this);
 exitItem = new MenuItem("Exit");
 exitItem.addActionListener(this);

 filesMenu.add(last5Item);
 filesMenu.add(previous5Item);
 filesMenu.add(lastHourItem);
 filesMenu.add(previousHourItem);
 filesMenu.addSeparator();
 filesMenu.add(headerItem);
 filesMenu.addSeparator();
 filesMenu.add(exitItem);

 helpMenu = new Menu("Help");

 aboutItem = new MenuItem("About");
 aboutItem.addActionListener(this);
 helpMenu.add(aboutItem);

 bar = new MenuBar();
 bar.add(filesMenu);
 bar.add(bookmarkMenu);
 bar.add(preferences);
 bar.add(helpMenu);

 setMenuBar(bar);

 modPrefDialog = new ModifyPreferences(this);

 sessionLabel = new Label("Session Address");
 sessionLabel.setBounds(10, 60, 100, 25);
 add(sessionLabel);

 sessionText = new TextField("rtp://___.___.___.___:_____/___");
 sessionText.setBounds(110,60, 230, 25);
 add(sessionText);

 sessionNameLabel = new Label("Session Name");
 sessionNameLabel.setBounds(360, 60, 90, 25);
 add(sessionNameLabel);

 sessionNameText = new TextField("");
 sessionNameText.setBounds(450, 60, 180, 25);
 add(sessionNameText);

 start = new Button("Start");
 start.setBounds(660, 60, 40, 25);
 start.addActionListener(this);
 start.setEnabled(true);
 add(start);

166

 stop = new Button("Stop");
 stop.setBounds(720, 60, 40, 25);
 stop.addActionListener(this);
 stop.setEnabled(false);
 add(stop);

 globalStatLabel = new Label("Global Statistics");
 globalStatLabel.setBounds(160, 100, 100, 20);
 add(globalStatLabel);

 gLab = new Label[15];
 gText = new TextField[15];
 int offsetx = 0;
 int offsety = 0;
 for(int ii=0; ii< 15; ii++){
 if(ii==8){
 offsetx= 220;
 offsety=-(ii*25);
 }
 gLab[ii] = new Label(gField[ii]);
 gLab[ii].setBounds(10+offsetx, 130+(ii*25)+offsety, 115, 20);
 add(gLab[ii]);
 gText[ii] = new TextField("");
 gText[ii].setBounds(125+offsetx, 130+(ii*25)+offsety, 90, 20);
 gText[ii].setEditable(false);
 add(gText[ii]);

 }

 activeLabel = new Label("Active Participants");
 activeLabel.setBounds(50, 340, 140, 20);
 add(activeLabel);

 activeArea = new TextArea("", 0, 0, TextArea.SCROLLBARS_BOTH);
 activeArea.setBounds(10,360, 175, 180);
 activeArea.setFont(new Font("Courier" , Font.PLAIN , 12));
 activeArea.setEditable(false);
 add(activeArea);

 passiveLabel = new Label("Passive Participants");
 passiveLabel.setBounds(230, 340, 140, 20);
 add(passiveLabel);

 passiveArea = new TextArea("", 0, 0, TextArea.SCROLLBARS_BOTH);
 passiveArea.setBounds(195, 360, 175, 180);
 passiveArea.setFont(new Font("Courier" , Font.PLAIN , 12));
 passiveArea.setEditable(false);
 add(passiveArea);

 streamLabel = new Label("Stream");
 streamLabel.setBounds(470, 120, 50, 25);
 add(streamLabel);

 streamChoice = new Choice();
 streamChoice.setBounds(520, 120, 250, 25);
 streamChoice.setEnabled(false);
 streamChoice.addItemListener(this);

167

 add(streamChoice);

 changeStream = new Button("Change");
 changeStream.setBounds(720, 150, 50, 25);
 changeStream.addActionListener(this);
 changeStream.setEnabled(false);
 add(changeStream);

 rLab = new Label[5];
 rText = new TextField[5];
 for(int ii=0; ii< 5; ii++){
 rLab[ii] = new Label(rField[ii]);
 rLab[ii].setBounds(500, 170+(ii*25), 100, 20);
 add(rLab[ii]);
 rText[ii] = new TextField("");
 rText[ii].setBounds(605, 170+(ii*25), 90, 20);
 rText[ii].setEditable(false);
 add(rText[ii]);

 }

 feedbkLabel = new Label("Feedback Reports");
 feedbkLabel.setBounds(510, 315, 100, 20);
 add(feedbkLabel);

 feedbkFieldsLabel = new Label(
 "Username Fraction Lost Jitter Packets Lost");
 feedbkFieldsLabel.setBounds(420, 340, 350, 20);
 add(feedbkFieldsLabel);

 feedbkArea = new TextArea("", 0, 0, TextArea.SCROLLBARS_VERTICAL_ONLY);
 feedbkArea.setBounds(410,360, 360, 180);
 feedbkArea.setFont(new Font("Courier" , Font.PLAIN , 12));
 feedbkArea.setEditable(false);
 add(feedbkArea);

 setVisible(true);

 streamTable = new Hashtable();

 this.addWindowListener(new WindowAdapter(){
 public void windowClosing(WindowEvent e){
 System.exit(0);
 }
 });

 }

168

 /**
 * Takes action when buttons are selected.
 *
 */
 public void actionPerformed(ActionEvent e)
 {
 if(e.getSource() == start){
 start.setEnabled(false);
 disableInputs();
 locator = sessionText.getText();
 recInterval = Double.parseDouble(
 modPrefDialog.intervalText.getText());
 presInterval = Integer.parseInt(
 modPrefDialog.intervalPresText.getText());
 flgPart = modPrefDialog.partBox.getState();
 flgPlay = modPrefDialog.playBox.getState();
 flgRecord = modPrefDialog.recordBox.getState();
 SSRCtoShow = 0;
 endDate = new Date((new Date()).getTime()
 + endsInHours[modPrefDialog.endChoice.getSelectedIndex()]*3600000L);

 if(startSession()){
 stop.setEnabled(true);
 addBm.setEnabled(true);
 changeStream.setEnabled(true);
 flgUpdateStreams = true;
 }
 else{
 start.setEnabled(true);
 enableInputs();
 }
 }

 if(e.getSource() == stop){
 flgActive = false;
 stop.setEnabled(false);
 addBm.setEnabled(false);
 monMgr.close();
 monMgr = null;
 mymgr = null;
 clearAllData();
 changeStream.setEnabled(false);
 start.setEnabled(true);
 enableInputs();
 }

 if(e.getSource() == changeStream){
 changeStream.setEnabled(false);
 flgUpdateStreams = false;
 clearStreamData();
 streamChoice.setEnabled(true);
 }

169

 if(e.getSource() == modifyPref){
 modPrefDialog.setTitle("Modify Preferences");
 modPrefDialog.enableInput();
 modPrefDialog.setVisible(true);
 modPrefDialog.savePreferences();
 }

 if(e.getSource() == viewPref){
 modPrefDialog.setTitle("View Preferences");
 modPrefDialog.disableInput();
 modPrefDialog.setVisible(true);
 }

 if(e.getSource()== selectBm){
 selBmDialog = new SelectBookmark(this);
 selBmDialog.setVisible(true);
 selBmDialog = null;
 }

 if(e.getSource()== deleteBm){
 delBmDialog = new DeleteBookmark(this);
 delBmDialog.setVisible(true);
 delBmDialog = null;
 }

 if(e.getSource()== addBm){
 addBmDialog = new AddBookmark(this);
 addBmDialog.setVisible(true);
 addBmDialog = null;
 }

 if(e.getSource()== last5Item){
 runViewer(sessionText.getText() , "LastFiveMinutes.txt");
 }
 if(e.getSource()== previous5Item){
 runViewer(sessionText.getText() , "PreviousFiveMinutes.txt");
 }
 if(e.getSource()== lastHourItem){
 runViewer(sessionText.getText() , "LastHour.txt");
 }
 if(e.getSource()== previousHourItem){
 runViewer(sessionText.getText() , "PreviousHour.txt");
 }
 if(e.getSource()== headerItem){
 runViewer(sessionText.getText() , "Header.txt");
 }
 if(e.getSource()== aboutItem){
 aboutDialog = new About(this);
 aboutDialog.setVisible(true);
 aboutDialog = null;
 }
 if(e.getSource()== exitItem){
 System.exit(0);
 }

 }

170

 /**
 * starts the monitoring session by creating a RtpMonitorManager object.
 */
 private boolean startSession(){

 // tries to create the RtpMonitorManager object
try{
 monMgr = new RtpMonitorManager(locator, flgPart, flgPlay,
 flgRecord, recInterval);
 mymgr = monMgr.getSessionManager();
}
catch(MalformedURLException e){
 feedbkArea.setText(
 "MalformedURLException creating RtpMonitorManager:" + '\n');
 feedbkArea.append(e.getMessage());
 return false;
}
catch(UnknownHostException e){
 feedbkArea.setText(
 "UnknownHostException creating RtpMonitorManager:" + '\n');
 feedbkArea.append(e.getMessage());
 return false;
}
catch(SessionManagerException e){
 feedbkArea.setText(
 "SessionManagerException creating RtpMonitorManager:" + '\n');
 feedbkArea.append(e.getMessage());
 return false;
}
catch(IOException e){
 feedbkArea.setText("IOException creating RtpMonitorManager:" + '\n');
 feedbkArea.append(e.getMessage());
 return false;
}

 flgActive = true;

 // creates a DisplayTask object to update the statistics on screen
 dispTask = new DisplayTask(this, presInterval);

 return true;
 }

 /**
 * Updates the global statistics.
 */
 public void showGlobalStats(){

 GlobalReceptionStats stats = mymgr.getGlobalReceptionStats();

 gText[0].setText(new Integer(stats.getBytesRecd()).toString());
 gText[1].setText(new Integer(stats.getPacketsRecd()).toString());
 gText[2].setText(new Integer(stats.getRTCPRecd()).toString());
 gText[3].setText(new Integer(stats.getSRRecd()).toString());

171

 gText[4].setText(new Integer(stats.getBadRTPkts()).toString());
 gText[5].setText(new Integer(stats.getBadRTCPPkts()).toString());
 gText[6].setText(new Integer(stats.getMalformedSR()).toString());
 gText[7].setText(new Integer(stats.getMalformedRR()).toString());
 gText[8].setText(new Integer(stats.getMalformedSDES()).toString());
 gText[9].setText(new Integer(stats.getMalformedBye()).toString());
 gText[10].setText(new Integer(stats.getLocalColls()).toString());
 gText[11].setText(new Integer(stats.getRemoteColls()).toString());
 gText[12].setText(new Integer(stats.getPacketsLooped()).toString());
 gText[13].setText(new Integer(stats.getTransmitFailed()).toString());
 gText[14].setText(new Integer(stats.getUnknownTypes()).toString());

 }

 /**
 * Updates the lists of active and passive participants.
 */
 public void showParticipants(){

 activeArea.setText("");
 Vector aux = mymgr.getActiveParticipants();

 Participant part;
 for(int ii = 0; ii< aux.size(); ++ii){
 part = (Participant)aux.elementAt(ii);
 activeArea.append(RtpUtil.getUsernameOrCNAME(part) + '\n');
 }
 passiveArea.setText("");
 aux = mymgr.getPassiveParticipants();

 for(int ii = 0; ii< aux.size(); ++ii){
 part = (Participant)aux.elementAt(ii);
 passiveArea.append(RtpUtil.getUsernameOrCNAME(part) + '\n');
 }

 }

 /**
 * Updates the stream statistics.
 */
 public void showStreamStats(){

 if(!flgUpdateStreams){
 return;
 }

 ReceiveStream dispStream = null;
 ReceiveStream stream;
 ReceptionStats stats;
 Participant part;
 String display;
 streamChoice.removeAll();
 streamTable.clear();

 Vector aux = mymgr.getReceiveStreams();
 for(int ii = 0; ii< aux.size(); ++ii){

172

 stream = (ReceiveStream) aux.elementAt(ii);
 part = stream.getParticipant();
 if(part != null){
 display = new String(RtpUtil.getUsernameOrCNAME(part) + " / " +
 RtpUtil.correctSSRC(stream.getSSRC()));
 }
 else{
 display = new String("unknown_participant / " +
 RtpUtil.correctSSRC(stream.getSSRC()));
 }

 streamChoice.add(display);
 streamTable.put(display, new Long(stream.getSSRC()));

 if(stream.getSSRC() == SSRCtoShow){
 dispStream = stream;
 streamChoice.select(ii);

 }
 }

 if(SSRCtoShow == 0){
 if(aux.size() > 0){
 dispStream = (ReceiveStream) aux.elementAt(0);
 SSRCtoShow = dispStream.getSSRC();
 }
 }

 if(dispStream == null){
 for(int jj=0; jj<5; ++jj){
 rText[jj].setText("");
 }
 SSRCtoShow = 0;
 return;
 }

 stats = dispStream.getSourceReceptionStats();

 rText[0].setText(new Integer(stats.getPDUlost()).toString());
 rText[1].setText(new Integer(stats.getPDUProcessed()).toString());
 rText[2].setText(new Integer(stats.getPDUMisOrd()).toString());
 rText[3].setText(new Integer(stats.getPDUInvalid()).toString());
 rText[4].setText(new Integer(stats.getPDUDuplicate()).toString());

 }

173

 /**
 * Updates the stream feedbacks.
 */
 public void showFeedbacks(){

 if(!flgUpdateStreams){
 return;
 }

 Participant part;
 Vector reports, feedbacks;
 Report rep;
 Feedback feedbk;

 feedbkArea.setText("");
 Vector aux = mymgr.getAllParticipants();
 for(int ii = 0; ii< aux.size(); ++ii){
 part = (Participant)aux.elementAt(ii);
 reports = part.getReports();

 for(int jj=0; jj< reports.size(); ++jj){
 rep = (Report) reports.elementAt(jj);
 feedbacks = rep.getFeedbackReports();
 for(int kk=0; kk < feedbacks.size(); ++kk){
 feedbk = (Feedback) feedbacks.elementAt(kk);
 if(feedbk.getSSRC() == SSRCtoShow){
 feedbkArea.append(fillBlanks(
 RtpUtil.getUsernameOrCNAME(part) , 19) + " ");
 double fraction = (feedbk.getFractionLost())/256.0;
 feedbkArea.append(
 fillBlanks(String.valueOf(fraction), 6) + " ");
 feedbkArea.append(
 fillBlanks(String.valueOf(feedbk.getJitter()),8) + " ");
 feedbkArea.append(
 fillBlanks(String.valueOf(feedbk.getNumLost()),10)
 + '\n');

 }
 }
 }
 }
 }

174

 /**
 * Take action when selection boxes are used.
 *
 */
 public void itemStateChanged(ItemEvent ie)
 {

 if(ie.getSource() == streamChoice){

 SSRCtoShow = ((Long) streamTable.get(ie.getItem())).longValue();

 flgUpdateStreams = true;
 changeStream.setEnabled(true);
 streamChoice.setEnabled(false);
 }

 }

 /**
 * Clears all stats info on screen.
 */
 private void clearAllData(){

 for(int jj=0; jj<15; ++jj){
 gText[jj].setText("");
 }
 for(int jj=0; jj<5; ++jj){
 rText[jj].setText("");
 }
 activeArea.setText("");
 passiveArea.setText("");
 feedbkArea.setText("");

 streamChoice.removeAll();
 streamTable.clear();

 }

 /**
 * Clears all stream related stats.
 */
 private void clearStreamData(){
 for(int jj=0; jj<5; ++jj){
 rText[jj].setText("");
 }
 feedbkArea.setText("");

 }

175

 /**
 * Disable user input components(used after a session is started)
 */
 private void disableInputs(){
 sessionText.setEnabled(false);
 modifyPref.setEnabled(false);
 selectBm.setEnabled(false);
 }

 /**
 * Enable user input components(used after a session is stoped)
 */
 private void enableInputs(){
 sessionText.setEnabled(true);
 modifyPref.setEnabled(true);
 selectBm.setEnabled(true);
 }

 /**
 * Returns the state of RtpMonitor. Also exits the program if the duration
 * is over.
 * @return true if the monitor is active
 */
 public boolean isMonitoring(){
 if(endDate.compareTo(new Date()) < 0){
 System.exit(0);
 }

 return flgActive;

 }

 /**
 * Creates a string with a fixed size, starting by a given string and ending
 * with blank spaces.
 * @param strin the original string
 * @param size the final size of the returning string
 * @return a string
 */
 private String fillBlanks(String strin, int size)
 {
 StringBuffer spaces = new StringBuffer();
 for(int ii = 0; ii <= size; ++ii){
 spaces.append(" ");
 }
 String newString = new String(strin + spaces);

 return newString.substring(0, size);
 }

176

 /**
 * Runs an external program specified in the preference menu
 * to display output files.
 * @param locator the session RtpMediaLocator
 * @param fileName the name of the file to be displayed
 */
 private void runViewer(String locator, String fileName){

 String prefix;

 Runtime r = Runtime.getRuntime();

 try{
 RtpMediaLocator rtpml = new RtpMediaLocator(locator);
 String session = rtpml.getSessionAddress();
 String port = (new Integer(rtpml.getSessionPort())).toString();
 String dir = new String("./session"
 + session.replace('.','-') + "port" + port);
 prefix = new String(dir + "/statistics");
 }
 catch (MalformedURLException e) {
 System.out.println(e.getMessage());
 return;
 }

 try{
 String prog = new String(modPrefDialog.viewerText.getText() + " " +
 prefix + fileName);
 Process p = r.exec(prog);
 }
 catch (IOException e){
 System.err.println(e.getMessage());
 }

 }

 /**
 * Method called upon executing class RtpMonitor. If there is no
 * argument an object of class RtpMonitor will be instantiated
 * and executed, otherwise the same will happen with an
 * RtpMonitorCommandLine object.
 */
 public static void main(String [] args)
 {

int nArgs = args.length;

 if(args.length == 0){
 RtpMonitor myProg = new RtpMonitor();
 }
 else{
 RtpMonitorCommandLine myProg = new RtpMonitorCommandLine(args);

 myProg.run();
}

 }

} // end of class RtpMonitor

177

package org.web3d.vrtp.rtp;

import javax.media.rtp.*;
import javax.media.rtp.event.*;
import javax.media.rtp.rtcp.*;

import java.io.*;
import java.net.*;
import java.util.*;

/**
 * A class used to start a RTP monitor from command line inputs.
 * <P>
 * This monitor does not have the option of playing streams.
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class RtpMonitorCommandLine {

 boolean willpart = false;
 boolean willplay = false;
 boolean willrecord = false;
 String locator = null;
 double interval = 30.0;
 int endsInHours = 168;
 Date endDate;

 RtpMonitorManager monMgr;

 /**
 * Method called upon executing class RtpMonitorCommandLine.
 */
 public static void main(String [] args){

RtpMonitorCommandLine myProg = new RtpMonitorCommandLine(args);
myProg.run();

 }

 /**
 * Constructor. It reads the command line arguments and sets
 * variables and flags.
 * The command line arguments have the following format:
 * <P>
 * java RtpMonitorCommandLine rtpLocator [options] <P>
 * rtpLocator example: rtp://224.2.125.50:50328/127 <P>
 * -part : monitor sends RTCP packets <P>
 * -play : monitor play streams <P>
 * -record : monitor records statistics <P>
 * -i nnn : nnn defines the recording interval in seconds (default 30s) <P>
 * -e ppp : ppp defines the monitoring duration in hours (default: 168
 * hs)<P>
 * -help : displays command line format and aborts
 *

178

 * <P>
 * @param args an array of strings
 */
 public RtpMonitorCommandLine(String [] args){

int nArgs = args.length;

if(nArgs == 0){
 System.out.println(
 "Format: java RtpMonitorCommandLine rtpLocator <options>");
 System.out.println(
 " rtpLocator example: rtp://224.2.125.50:50328/127");
 System.out.println(
 " options: -part : monitor sends RTCP packets");
 System.out.println(
 " -play : monitor play streams");
 System.out.println(
 " -record : monitor records statistics");
 System.out.println(
 " -i nnn : nnn defines the recording interval in seconds
 (default 30s)");
 System.out.println(
 " -e ppp : ppp defines the monitoring duration in hours
 (default: 168 hs)");
 System.out.println(
 " -help : displays command line format and aborts ");
 System.exit(0);

}

 if(args[0].indexOf("-help") == 0) {
 System.out.println(
 "Format: java RtpMonitorCommandLine rtpLocator <options>");
 System.out.println(
 " rtpLocator example: rtp://224.2.125.50:50328/127");
 System.out.println(
 " options: -part : monitor sends RTCP packets");
 System.out.println(
 " -play : monitor play streams");
 System.out.println(
 " -record : monitor records statistics");
 System.out.println(
 " -i nnn : nnn defines the recording interval in seconds
 (default 30s)");
 System.out.println(
 " -e ppp : ppp defines the monitoring duration in hours
 (default: 168 hs)");
 System.out.println(
 " -help : displays command line format and aborts ");
 System.exit(0);

}

 // parses the command line arguments to extract the options
 locator = args[0];

int ii = 1;
while(ii < nArgs){

 if(args[ii].indexOf("-part") == 0) {
 willpart = true;

179

 }
 else if(args[ii].indexOf("-play") == 0) {
 willplay = true;
 }
 else if(args[ii].indexOf("-record") == 0) {
 willrecord = true;
 }
 else if((args[ii].indexOf("-i") == 0) && (ii < nArgs -1)) {
 interval = Double.parseDouble(args[ii+1]);
 }
 else if((args[ii].indexOf("-e") == 0) && (ii < nArgs -1)) {
 endsInHours = Integer.parseInt(args[ii+1]);
 }
 ii++;

}

 endDate = new Date((new Date()).getTime() + endsInHours*3600000L) ;

 // displays the selected options on the console
 System.out.println("locator = " + locator);
 System.out.println("play = " + willplay);
 System.out.println("part = " + willpart);
 System.out.println("record = " + willrecord);
 System.out.println("recording interval = " + interval + " seconds.");
 System.out.println("monitoring duration = " + endsInHours + " hours.");
 }

 /**
 * Method that will create the RtpMonitorManager object and will exit the
 * program when the user defined duration is elapsed.
 */
 public void run(){

 // tries to create the RtpMonitorManager object
try{
 monMgr = new RtpMonitorManager(locator, willp art, willplay,
 willrecord, interval);
}

catch(MalformedURLException e){
 System.err.println(
 "MalformedRTPMRLException creating RTPMonitorManager: ");
 System.err.println(e.getMessage());

 System.exit(0);
}
catch(UnknownHostException e){
 System.err.println(
 "UnknownHostException creating RTPMonitorManager: ");
 System.err.println(e.getMessage());

 System.exit(0);
}
catch(SessionManagerException e){
 System.err.println(
 "RTPSessionManagerException creating RTPMonitorManager: ");
 System.err.println(e.getMessage());

180

 System.exit(0);
}
catch(IOException e){
 System.err.println("IOException creating RTPMonitorManager: ");
 System.err.println(e.getMessage());

 System.exit(0);
}

 // runs until the user aborts the program (ctrl-C) or the
 // monitoring period is over
 while(true){

 // tests if the monitoring period is over
 if(endDate.compareTo(new Date()) < 0){
 System.exit(0);
 }

 try{
 Thread.sleep(50000);
 }
 catch (InterruptedException e){}
 }

 }

} // end of class RtpMonitorCommandLine

181

package org.web3d.vrtp.rtp;

import javax.media.rtp.*;
import javax.media.rtp.event.*;
import javax.media.rtp.rtcp.*;

// RTPSessionMgr class
import com.sun.media.rtp.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.media.*;
import javax.media.protocol.*;

/**
 * A class that encapsulates all operations necessary to start a new
 * monitoring session, play its streams, and record statistical data.
 * <P>
 * This class does not display statistics on screen. That must be done
 * by another class, usually a frame, using data from a SessionManager
 * object (see method getSessionManager).
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class RtpMonitorManager implements ReceiveStreamListener {

 private RtpMediaLocator rtpml = null;
 private SessionManager mgr = null;
 private SessionAddress sessaddr = null;
 private boolean flgPart;
 private boolean flgPlay;
 private boolean flgRecord;
 private Hashtable windowlist;
 private RecordTask recTask;

 /**
 * @param locatorString the session description string
 * format, e.g. rtp://224.2.134.67:50980/127
 * <P>
 * @param willParticipate
 * true if the Monitor will participate in the session,
 * sending RTCP packets, false otherwise.
 * <P>
 * @param willPlayStreams true if the Monitor will play the
 * receiving streams, false otherwise.
 * <P>
 * @param willRecord true if the Monitor will record statistical
 * data about the session, false otherwise.
 * <P>
 * @param recordInterval the time between data recordings in seconds
 * @exception MalformedURLException
 * if the locatorString argument does not conform to the syntax.
 * <P>
 * @exception UnknownHostException
 * if InetAddress.getByName(session address) fails
 * <P>

182

 * @exception SessionManagerException
 * Exception thrown when there is an error starting an
 * RTPSessionManager
 * <P>
 * @exception IOException
 * Exception thrown when there is an error in RTPSessionManager
 */
 public RtpMonitorManager(String locatorString, boolean willParticipate,
 boolean willPlayStreams, boolean willRecord ,
 double recordInterval)
 throws MalformedURLException, UnknownHostException,
 SessionManagerException, IOException
 {
 flgPart = willParticipate;
 flgPlay = willPlayStreams;
 flgRecord = willRecord;

 // creates the RtpMediaLocator object
 rtpml = new RtpMediaLocator(locatorString);

 // creates an empty RtpSessionManager object
mgr = new RTPSessionMgr();

 // if the user select to play the streams, registers as a
 // listener for received streams

if(flgPlay){
 mgr.addReceiveStreamListener(this);
 windowlist = new Hashtable();
 }

 // gets the InetAddress of the session
 InetAddress destaddr = InetAddress.getByName(rtpml.getSessionAddress());

 // gets the session port
int port = rtpml.getSessionPort();

 // creates a SessionAddress objet to represent the session
 sessaddr = new SessionAddress (destaddr, port, destaddr, port+1);

 // call the method to generate a CNAME for the user
 String cname = mgr.generateCNAME();

 // gets the username from the system and adds it to
 // the string "/rtpMonitor". That will be the user name sent in
 // RTCP packets
 String username = null;
 try{
 username = System.getProperty("user.name")+ "/rtpMonitor";
 }
 catch(SecurityException e) {
 username = "RTPMonitor-user";
 }

 // creates the source description fields
 SourceDescription [] userdesclist = new SourceDescription[3];

 userdesclist[0] = new

183

 SourceDescription(SourceDescription.SOURCE_DESC_NAME,
 username, 1, false);
 userdesclist[1] = new
 SourceDescription(SourceDescription.SOURCE_DESC_CNAME,
 cname, 1, false);
 userdesclist[2] = new
 SourceDescription(SourceDescription.SOURCE_DESC_TOOL,
 "RTPMonitor v1.0" , 1, false);

 // generates a local address
 SessionAddress localaddr = new SessionAddress();

 // that is the fraction of RTCP bandwith compared to RTP
 double rtcpFraction = 0.05;

 // if the user has selected for no participation in the session,
 // sets the fraction above to zero (no RTCP packets)
 if(! flgPart)
 rtcpFraction = 0.0;

 // initiates the SessionManager object
 mgr.initSession(localaddr, userdesclist, rtcpFraction , 0.25);

int ttl = rtpml.getTTL();

 // starts the SessionManager object
 mgr.startSession(sessaddr, ttl, null);

 // if the user has selected for recording statistics, creates a
 // RecordTask objet to generate the reports periodically
 if(flgRecord){
 recTask = new RecordTask(this, recordInterval);
 }

 }

 /**
 * Method of classes that implement the ReceiveStreamListener
 * interface
 *
 */
 public void update(ReceiveStreamEvent event){
 Player newPlayer = null;
 RtpPlayerWindow playerWindow = null;
 String cname = null;

 SessionManager source = (SessionManager) event.getSource();

 // if a new stream is received
 if(event instanceof NewReceiveStreamEvent){

 // gets the ReceiveStream object
 try{
 ReceiveStream stream =
 ((NewReceiveStreamEvent)event).getReceiveStream();

184

 // gets the Participant object associated with the stream
 Participant part = stream.getParticipant();

 // gets the participant canonical name
 if(part != null){
 cname = part.getCNAME();
 }

 // gets the stream DataSource associated with the stream
 DataSource dsource = stream.getDataSource();

 // creates a player to play the DataSource
 newPlayer = Manager.createPlayer(dsource);

 // if a player was created generates a player window
 if(newPlayer != null){
 playerWindow = new RtpPlayerWindow(newPlayer, cname);
 windowlist.put(stream, playerWindow);
 }

 }
 catch (Exception e){
 System.err.println(
 "NewRecvStreamEvent exception " + e.getMessage());
 return;
 }
 }

 // if the sender of a stream was identified
 if(event instanceof StreamMappedEvent){

 // gets the ReceiveStream object
 ReceiveStream stream =
 ((StreamMappedEvent)event).getReceiveStream();

 // gets the Participant associated with the stream
 Participant part = stream.getParticipant();

 // retrieves the correct player window from the
 // hash table
 if(stream != null){
 playerWindow = (RtpPlayerWindow) windowlist.get(stream);
 }

 // change the title of the player window to include the
 // name of the sender
 if((playerWindow != null) && (part != null)){
 playerWindow.Name(part.getCNAME());
 }
 }
 }

185

 /**
 * Closes a monitor session, stops recording and closes player windows
 *
 */
 public void close(){

 if(flgRecord){
 recTask.exit();
 }

 if(flgPlay){

 Enumeration windows = windowlist.elements();
 while(windows.hasMoreElements()){
 RtpPlayerWindow currwindow =
 (RtpPlayerWindow) windows.nextElement();
 if(currwindow != null){
 currwindow.killThePlayer();
 }
 }
 }

 mgr.closeSession(null);
 mgr = null;

 }

 /**
 * Returns the RtpMediaLocator associated with the RTP session
 *
 * @return the session media locator
 */
 public RtpMediaLocator getMediaLocator(){ return rtpml;}

 /**
 * Returns the SessionManager object created by the monitor
 *
 * @return the SessionManager (RTPSessionMgr)
 */
 public SessionManager getSessionManager(){ return mgr;}

 /**
 * Returns the SessionAddress object associated with the RTP session
 *
 * @return the SessionAddress
 */
 public SessionAddress getSessionAddress(){ return sessaddr;}

} // end of class RtpMonitorManager

186

package org.web3d.vrtp.rtp;

/*
 * @(#)RTPPlayerWindow.java 1.7 98/03/28
 *
 * Copyright 1996-1998 by Sun Microsystems, Inc.,
 * 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
 * All rights reserved.
 *
 * This software is the confidential and proprietary information
 * of Sun Microsystems, Inc. ("Confidential Information"). You
 * shall not disclose such Confidential Information and shall use
 * it only in accordance with the terms of the license agreement
 * you entered into with Sun.
 */

import javax.media.Player;
import java.awt.*;
import com.sun.media.ui.*;

/**
 * This class is used to create a window for playing an audio/video
 * stream. It is a subclass of PlayerWindow, that added the
 * capacity of modifying the window name.
 * Both classes were developed by SUN. RTPPlayerWindow came with
 * JMF1.1 sample code and PlayerWindow is in the file JMF.jar.
 */
public class RtpPlayerWindow extends PlayerWindow {

 public RtpPlayerWindow(Player player, String title) {
super(player);
setTitle(title);

 }
 public void Name(String title){

setTitle(title);
 }

} // end of class PlayerWindow

187

package org.web3d.vrtp.rtp;

import javax.media.rtp.*;
import javax.media.rtp.event.*;
import javax.media.rtp.rtcp.*;

import java.util.*;

/**
 * A class with some RTP utilities (static methods)
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */

public class RtpUtil
{
 /**
 * Returns the participant username
 *
 * @param part the Participant object
 *
 * @return a string with the participant's username
 */
 public static String getUsername(Participant part){

 Vector sdeslist = part.getSourceDescription();
 if(sdeslist == null){
 return null;
 }

 SourceDescription des;
 for(int ii=0; ii < sdeslist.size(); ++ii){
 des = (SourceDescription) sdeslist.elementAt(ii);
 if(des.getType() == SourceDescription.SOURCE_DESC_NAME){
 return des.getDescription();
 }
 }
 return null;

 }

188

 /**
 * Returns the participant's username or his CNAME,
 * if no username is known.
 *
 * @param part the Participant object
 *
 * @return a string with the participant's username or CNAME
 */
 public static String getUsernameOrCNAME(Participant part){
 String username = getUsername(part);
 if(username == null){
 return part.getCNAME();
 }

 else{
 return username;
 }
 }

 /**
 * Converts an number represented as a signed integer(32 bits)
 * to a long integer (64 bits). JMF methods return the SSRC as an
 * integer. As the SSRC is a 32 bits number, some are represented
 * in JMF as negative integers.
 * This convertion is necessary to present SSRCs as a positive integer.
 */
 public static long correctSSRC(long ssrc){
 if(ssrc < 0){
 return (4294967296L + ssrc);
 }
 return ssrc;
 }

} // end of class RtpUtil

189

package org.web3d.vrtp.rtp;

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;

/**
 * A Dialog to select a session bookmark. It displays a list choice
 * of session names.
 * <P>
 *
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 * @version 1.0
 */
public class SelectBookmark extends Dialog implements ItemListener {

 java.awt.List sessionNamesList;
 Vector sessionAddressVec;
 RtpMonitor theParent;

 /**
 * Constructor.
 * <P>
 * @param parent the parent frame
 */
 public SelectBookmark(Frame parent){
 super(parent, "Select Bookmark" , true);
 setSize(250 , 200);

 theParent = (RtpMonitor) parent;

 addWindowListener(new CloseWindow());

 sessionNamesList = new java.awt.List(5 , false);

 loadBookmarks();

 sessionNamesList.setBackground(Color.lightGray);
 sessionNamesList.addItemListener(this);

 add(sessionNamesList);

 }

190

 /**
 * Activated when a bookmark choice is made.
 * <P>
 * @param parent the parent frame
 */
 public void itemStateChanged(ItemEvent e){

 int index = sessionNamesList.getSelectedIndex();
 theParent.sessionText.setText(
 (String) sessionAddressVec.elementAt(index));
 theParent.sessionNameText.setText(
 sessionNamesList.getItem(index));
 setVisible(false);

 }

 /**
 * Loads the session bookmarks from file "bookmarks.txt"
 */
 private void loadBookmarks(){

 sessionAddressVec = new Vector();

 try{
 BufferedReader input =
 new BufferedReader(new FileReader("bookmarks.txt"));
 String line;

 while((line = input.readLine()) != null){
 int pos = line.lastIndexOf("rtp://");
 if (pos != -1){
 sessionAddressVec.addElement(line.substring(pos));
 sessionNamesList.add(line.substring(0 , pos));
 }
 }
 input.close();
 }
 catch (FileNotFoundException e){
 System.out.println("Select Bookmark: " + e.getMessage());
 }
 catch (IOException e){
 System.err.println(
 "Exception reading bookmark: " + e.getMessage());
 }

 }

} // end of class SelectBookmark

191

APPENDIX E. COMPARISON RTP MIB VERSUS JMF STATISTICS

192

SessionTable
RTP MIB JMF-based RTP Monitor Application Comments

SessionIndex (Integer32) – an index of the
conceptual row which is for SNMP purposes
only and has no relation with any protocol
value.

Not applicable.
-

SessionDomain (TDomain) – the transport
layer protocol used for sending or receiving
the stream of RTP packets in this session.

Not implemented. It can be added.
JMF uses UDP as the transport protocol.
Extensibility to other protocols is possible, but not
provided.

SessionRemAddr (Taddress) – the remote
destination transport address on which the
RTP data packet is sent and/or received.

Not implemented. It can be added.
In RTP Monitor the session transport
address names the directory where the files
are created and updated.
e.g. session224.2.2.2port88888

SessionLocAddr (Taddress) – the local
destination transport address on which the
stream of data packet is being sent and/or
received.

Not implemented. It can be added.

SessionIfIndex (InterfaceIndex) – this value
is set to the corresponding value from the
Internet Standard MIB. This is the interface
that the RTPStream is being sent to or
received from.

Not applicable.
-

SessionSenderJoins (Counter32) – the number
of senders that have been observed joined the
session since SessionStartTime (see below).

Not implemented. Not part of native JMF statistics. It can be
derived in an JMF application by
monitoring NewRecvStreamEvents.

SessionReceiverJoins(Counter32) - the
number of receivers that have been observed
joined the session since SessionStartTime (
see below).

Not implemented. Not part of native JMF statistics. It can be
derived in an JMF application by searching
for new participants in the list of
participants managed by
RTPSessionManager.

193

SessionByes (Counter32) – a count of RTCP
BYE.

Not implemented. Not part of native JMF statistics. It can be
derived in an JMF application by
monitoring ByeEvents.

SessionStartTime (TimeStamp) – the value of
SysUpTime at the time that this row is
created.

Not implemented. That is the time when the Session
Monitoring starts. It can be added to
RTPMonitor.

SessionMonitor (ThuthValue) – set to true if
sender or receivers in addition to the local
RTP System are to be monitored.

Not applicable. In RTP Monitor it is always true.

SessionRowStatus (RowStatus) – active when
RTP/RTCP Messages are being sent or
received by an RTPSystem. If this row is
"notInService" it may be removed after 5
minutes.

Not implemented. It can be implemented in RTP Monitor, but
without removals.

Not provided by MIB. Time (hh:mm:ss) – time of the report Needed. Implicit in SNMP?
Bill Strahm comments: “Times of the
reports are in the sender/receiver report
tables.”

Not provided by MIB. TotalParticipants (int) – the total number
of participants attending the session.

 Needed. Equals active + passive participants and
also remote + local.
Bill Strahm comments: “We argued about whether
we should track Sender/Receiver Joins/Byes as a
high watermark, a total count, or a current count.
We decided on the counter. Depending on how you
want to track “TotalParticipants” it very well may
be rtpSessionSenderJoins +
rtpSessionReceiverJoins”.

Not provided by MIB. RemoteParticipants(int) – the number of
remote participants attending the session

Desirable.
Bill Strahm comments: “Can simply be
the count of receivers in the receiver table”.

194

Not provided by MIB. ActiveParticipants (int) – the number of
active participants (senders) attending the
session.

Needed.
Bill Strahm comments: “See above”.

Not provided by MIB. TotalBytesRecd (int) – the number of
bytes received in the session, before any
validation.

 Needed for bandwidth calculations.
Bill Strahm comments: “rtpRcvOctets in
the receiver table”.

Not provided by MIB. TotalPacketsRecd (int) – the total number
of RTP and RTCP packets received in the
session before any packet validation.

Needed for comparison of bandwidth
versus packets per second performance.
Bill Strahm comments: “rtpRcvPackets in
the receiver table”.

Not provided by MIB. RTCPPacketsRecd (int) – the total
number of RTCP packets received in the
session before any header validation.

Desirable.
Bill Strahm comments: “Combination of
SR/RR counts out of the sender/receiver
table”.

Not provided by MIB. SRPacketsRecd (int) – the total number
of sender reports received in the session.

Desirable.
Bill Strahm comments: “rtpSenderSR
from the sender table.

Not provided by MIB. BadRTPPackets (int) – the total number
of RTP data packets that failed the RTP
header validation check.

Desirable.

Not provided by MIB. BadRTCPPackets (int) – the total number
of RTCP packets that failed the RTCP
header validation check.

Desirable.

Not provided by MIB. MalformedSR (int) – the total number of
invalid sender reports due to length
inconsistency.

Desirable.

Not provided by MIB. MalformedRR (int) – the total number of
invalid receiver reports due to length
inconsistency.

Desirable.

Not provided by MIB. MalformedSDES (int) – the total number
of invalid SDES packets due to length

Desirable.

195

inconsistency.
Not provided by MIB. MalformedBYE (int) – the total number

of invalid BYE packets due to length
inconsistency.

Desirable.

Not provided by MIB. LocalCollisions (int) – the total number
of local collisions (SSRC collisions).

Desirable.

Not provided by MIB. RemoteCollisions (int) – the total number
of remote collisions (SSRC collisions).

Desirable.

Not provided by MIB. PacketsLooped (int) – the total number of
packets looped.

Desirable.

Not provided by MIB. FailedTransmission (int) – the number of
packets that failed to get transmitted.

Desirable.

Not provided by MIB. UnknownRTCPType (int) – the number
of individual RTCP packets types that
were not implemented or not recognized.

Desirable.

196

SenderTable

RTP MIB JMF-based RTP Monitor Application Comments
SenderSSRC (Unsigned32) – the sender
synchronization source identifier

SenderSSRC (long) Slight type mismatch, but workable.

SenderCNAME (DisplayString) – the
canonical name of the sender

SenderCNAME (String) -

SenderAddress (Taddress) – the unicast
transport source address of the sender.

Not provide by JMF. -

SenderPackets (Counter64) – count of RTP
packets sent by this sender, or observed by an
RTP Monitor, since SenderStartTime.

SenderPackets (int) Called ProcessedPDU by JMF – number of
valid packets received from the selected
source. Possible type issue. It can
overflow.

SenderOctets (Counter64) – count of RTP
octets sent by this sender or observed by an
RTP Monitor, since SenderStartTime.

Not provided by JMF. JMF only has a corresponding session count.

SenderTool (DisplayString) – Name of the
application program source of the stream.

Not implemented. It can be read from JMF
RTPSourceDescription object.

SRs (Counter32) – a counter of the number of
RTCP Sender Reports that have been sent
from this sender or observed if the RTP entity
is a monitor, since SenderStartTime.

Not implemented. Not part of native JMF statistics. It can be
derived in an JMF application by
monitoring RecvSenderReportEvents.

SenderSRTime (TimeStamp) – the value of
SysUpTime at the time that the last SR was
received from this sender, in the case of a
monitor or receiving host, or sent by this
sender, in case of a sending host.

Not implemented. It can be read from JMF RTPSenderReport
object.

SenderPT (integer 0..127) – static or dynamic
payload type from the RTP Header.

Not provided by JMF. -

SenderStartTime (TimeStamp) – the value of
SysUpTime at the time this row was created.

Not implemented. It is the time when the Monitor detected
this source. It can be derived by the JMF
application.

197

Not provided by MIB. LostPDU (int) – the difference between
the number of packets expected as
determined by the RTP sequence number
range and the count of packets actually
received and validated.

Desirable.
Bill Strahm comments: “RcvrLostPackets in the
Receiver Table”.

Not provided by MIB. MisorderedPDU (int) – the total number
of data packets that came in out of order
as per the RTP sequence number.

 Desirable.
Bill Strahm comments: “Not available in
the MIB. It would have to be in the
RcvrTable.

Not provided by MIB. InvalidPDU (int) – the total number of
RTP data packets that have failed to be
within an acceptable sequence number
range for an established SSRC id.

Desirable.
Bill Strahm comments: “Not available in
the MIB. It would have to be in the
RcvrTable.

Not provided by MIB. DuplicatePDU (int) – the total number of
RTP data packets that match the
sequence number of another already in
the input queue.

Desirable.
Bill Strahm comments: “Not available in
the MIB. It would have to be in the
RcvrTable.

RcvrTable
 RTP MIB JMF-based RTP Monitor Application Comments

RcvrSRCSSRC (Unsigned32) – the SSRC of
the sender

RcvrSRCSSRC (long) Type issue.

RcvrSSRC (Unsigned32) – the SSRC of the
receiver

RcvrSSRC (long) Type issue.

RcvrCNAME (DisplayString) – the canonical
name of the receiver.

RcvrCNAME (String) -

RcvrAddr (Taddress) – the unicast transport
address of the receiver.

Not implemented. It can be added.

198

RcvrRTT (Gauge32) – the round trip time
measurement taken by the source of the RTP
stream.

Not provided by JMF. This value can only be calculated by
senders after receiving RTP feedback about
their streams. JMF does not provide this
statistic. This capability was requested was
requested in the jmf-interest mailing list.

RcvrLostPackets (Counter64) – a count of
RTP packets lost as observed by this receiver.

RcvrLostPackets (long) -

RcvrJitter (Gauge32) – an estimate of delay
variation as observed by this receiver.

RcvrJitter (long) Type issue.

RcvrTool (DisplayString) – the name of the
application program source of the stream.

Not implemented. It can be read from JMF
RTPSourceDescription object.

RRs (Counter32) – a count of the number of
RTCP Receiver Reports that have been sent
from this receiver since RcvrStartTime.

Not implemented. Not part of native JMF statistics. It can be
derived in an JMF application by
monitoring RecvSenderReportEvents.

RcvrRRTime (TimeStamp) – the value of
SysUpTime at the last RTCP Receiver Report
was received or sent (in case of the sender).

Not provided by JMF. JMF does not provide the time a feedback
is received or sent. This capability was
requested was requested in the jmf-interest
mailing list.

RcvrPT (Integer) – static or dynamic payload
type from the RTP header.

Not provided by JMF. -

RcvrPackets (Counter64) – count of RTP packets
received by this RTP host since RcvrStartTime.

Not implemented. Called ProcessedPDU by JMF – number of
valid packets received from the selected
source. Same as SenderPackets in the
SenderTable.

RcvOctets (Counter64) – count of RTP octets
received since RcvrStartTime.

Not implemented. Not provided by JMF. . Same as
SenderOctets in the SenderTable.

RcvStartTime (TimeStamp) – the value of
SysUpTime at the time that this row is
created.

Not implemented. It can be added.

199

APPENDIX F. RTPHEADER JAVADOC

The RtpHeader Javadoc is available at:

http://www.web3d.org/WorkingGroups/vrtp/javadoc/dis-java-vrml
/mil/navy/nps/dis/RtpHeader.html

207

APPENDIX G. RTPHEADER SOURCE CODE

package mil.navy.nps.dis;

import mil.navy.nps.util.*;
import java.io.*;

/**
 * This class encapsulates the header of the Real-time Transport Protocol (RTP)
 * when used to transfer DIS packets as a payload.
 *
 * @version 1.0
 * @author Francisco Afonso (afonso@cs.nps.navy.mil)
 *
 * <dt>References:
 * <dd>RTP: (RFC1889) <a href="http://www.ietf.org/internet-drafts/draft-ietf-
 * avt-rtp-new-04.txt">
 * http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-new-04.txt
 *
 */

public class RtpHeader extends PduElement
{
 // this SSRC will be used for all transmitted packets
 private static long mySSRC;

 // this variable contains the next sequence number of a transmitted packet
 private static int nextSequenceNumber;

 static
 {

 // assigns a random integer to the SSRC
 mySSRC = (long)(Math.random() * UnsignedInt.MAX_INT_VALUE);

 // assign a random integer to the first sequence number
 nextSequenceNumber = (int)(Math.random()*UnsignedShort.MAX_SHORT_VALUE);
 }

 /**
 * Identifies the version of RTP (2 bits). RFC1889 defines the actual
 * version as two(2).
 *
 */
 public static final int RTP_VERSION = 2;

208

 /**
 * Padding is being performed at the DIS protocol level.
 * Therefore the padding bit is set to zero.
 *
 */
 public static final int RTP_PADDING = 0;

 /**
 * The extension bit defines if the normal header will be followed
 * by an extension header.
 * Not needed in this application, and so set to zero.
 *
 */
 public static final int RTP_EXTENSION = 0;

 /**
 * Contains the number of contributing source identifiers in this header.
 * This is used only by mixers. Set to zero.
 *
 */
 public static final int RTP_CSRC_COUNT = 0;

 /**
 * This bit is used as a marker by a specific profile or
 * application.
 * Not used so far. Set to zero.
 *
 */
 public static final int RTP_MARKER = 0;

 /**
 * The payload type number was set to 111.
 * It belongs to the dynamic assignment range (96-127).
 * Numbers in this range do not need to be registered. <p>
 * See: <a href="http://www.ietf.org/internet-drafts/draft-ietf-avt-profile-
 * new-06.txt">
 * http://www.ietf.org/internet-drafts/draft-ietf-avt-profile-new-06.txt
 * - Session 3.
 *
 *
 */
 public static final int RTP_PAYLOAD_TYPE_FOR_DIS = 111;

209

 /**
 * Contains the size of the header in bytes (= 12).
 */
 public static final int sizeOf = 12;

 // the packet sequence number
 private UnsignedShort sequenceNumber;

 // the packet timestamp
 private UnsignedInt timestamp;

 // the packet Sincronization Source Identifier (SSRC)
 private UnsignedInt SSRC;

 /**
 * Constructor. An empty header is created.
 */
 public RtpHeader()
 {
 sequenceNumber = new UnsignedShort();
 timestamp = new UnsignedInt();
 SSRC = new UnsignedInt();

 return;
 }

 /**
 * Returns the packet sequence number.
 * @return the sequence number as an unsigned short (16 bits)
 */
 public UnsignedShort getSequenceNumber()
 {
 return (UnsignedShort)sequenceNumber.clone();
 }

 /**
 * Returns the packet timestamp.
 * @return the timestamp as an unsigned int (32 bits)
 */
 public UnsignedInt getTimestamp()
 {
 return (UnsignedInt)timestamp.clone();
 }

 /**
 * Returns the packet Syncronization Source Identifier.
 * @return the SSRC as an unsigned int (32 bits)
 */
 public UnsignedInt getSSRC()
 {
 return (UnsignedInt)SSRC.clone();
 }

210

 /**
 * Sets the packet sequence number.
 * @param pSequenceNumber the sequence number as an unsigned short
 * (16 bits)
 */
 public void setSequenceNumber(UnsignedShort pSequenceNumber)
 {
 sequenceNumber = pSequenceNumber;
 }

 /**
 * Sets the packet timestamp.
 * @param pTimestamp the timestamp as an unsigned int (32 bits)
 */
 public void setTimestamp(UnsignedInt pTimestamp)
 {
 timestamp = pTimestamp;

 }

 /**
 * Sets the Syncronization Source Identifier.
 * @param pSSRC the SSRC as a unsigned int (32 bits)
 */
 public void setSSRC(UnsignedInt pSSRC)
 {
 SSRC = pSSRC;
 }

 /**
 * Increments the sequence number. The RtpHeader class mantains a static
 * variable with the next sequence number to be assigned to a packet.
 * This function increments this variable. If the sequence number will
 * exceed the 32 bits boundaries it is set to zero.
 */
 private void incrementSequenceNumber()
 {

 // if after the increment the sequence number gets longer than 16
 bits
 // than it should be set to zero
 ++nextSequenceNumber;
 if(nextSequenceNumber > UnsignedShort.MAX_SHORT_VALUE){
 nextSequenceNumber = 0;
 }

 return;
 }

211

 /**
 * Prepares the header for sending. Assigns the sequencial number from
 * a static variable, takes the timestamp from the DIS pdu and sets the SSRC.
 * @param pdu the DIS pdu that will be transmitted
 */
 public void prepareToSend(ProtocolDataUnit pdu)
 {

 // assigns a sequence number (the next sequence number kept by a
 static
 // variable)
 sequenceNumber = new UnsignedShort(nextSequenceNumber);

 // increments the next sequence number variable
 incrementSequenceNumber();

 // assigns as a timestamp the Dis-Java-Vrml timestamp
 timestamp = pdu.getTimestamp();

 // assigns the common SSRC
 SSRC = new UnsignedInt(mySSRC);

 return;
 }

 /**
 * Returns the size of the header.
 * @return the header size
 */
 public int length()
 {
 return RtpHeader.sizeOf;
 }

 /**
 * Serializes the header into a DataOutputStream.
 * @param outputStream the stream that will receive the serialized header.
 */
 public void serialize(DataOutputStream outputStream)
 {
 // creates the first and second byte from the header
 UnsignedByte firstByte = new UnsignedByte((RTP_VERSION * 64) +
 (RTP_PADDING * 32) + (RTP_EXTENSION * 16) + RTP_CSRC_COUNT);
 UnsignedByte secondByte = new UnsignedByte((RTP_MARKER * 128)
 + RTP_PAYLOAD_TYPE_FOR_DIS);

 // serializes
 firstByte.serialize(outputStream);
 secondByte.serialize(outputStream);
 sequenceNumber.serialize(outputStream);
 timestamp.serialize(outputStream);
 SSRC.serialize(outputStream);
 return;
 }

212

 /**
 * Fills the header contents with data from a DataInputStream
 * @param inputStream the stream which contains the header.
 */
 public void deSerialize(DataInputStream inputStream)
 {
 UnsignedByte firstByte = new UnsignedByte(0);
 UnsignedByte secondByte = new UnsignedByte(0);

 // deserializes
 firstByte.deSerialize(inputStream);
 secondByte.deSerialize(inputStream);
 sequenceNumber.deSerialize(inputStream);
 timestamp.deSerialize(inputStream);
 SSRC.deSerialize(inputStream);

 return;
 }

 /**
 * Makes deep copies of all the instance variables.
 *
 */
 public Object clone()
 {
 RtpHeader newHeader = (RtpHeader)super.clone();

 newHeader.setSequenceNumber(this.getSequenceNumber());
 newHeader.setTimestamp(this.getTimestamp());
 newHeader.setSSRC(this.getSSRC());

 return newHeader;
 }

 /**
 * Prints internal values for debugging.
 *
 */
 public void printValues(int indentLevel, PrintStream printStream)
 {
 StringBuffer buf =
 ProtocolDataUnit.getPaddingOfLength(indentLevel);

 printStream.println(buf + "sequenceNumber: " +
 sequenceNumber.intValue());
 printStream.println(buf + "timestamp: " + timestamp.longValue());
 printStream.println(buf + "SSRC: " + SSRC.longValue());

 return;
 }

} // end of class RtpHeader

213

LIST OF REFERENCES

Advanced Neworks and Services, “Internet2 - Building the Next Generation Internet,”
[http://www.advanced.org/surveyor/]. August 1997.

Agarwal, Deb, “Rtpmon Information,”
[http://www-itg.lbl.gov/mbone/rtpmon.tips.html]. June 1997.

Apple Computer, Inc., Quicktime 4, [http://www.apple.com/quicktime/]. August 1999.

Baugher, Mark and others, “Real-Time Transport Protocol Management Information
Base”, Internet-Draft draft-ietf-avt-rtp-mib-05.txt, Internet Engineering Task Force, 12
April 1999. Available at: http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-mib-05.txt.

Booch, G., Jacobson, I., and Rumbaugh, J., “UML Specification version 1.1.”
1 September 1997. Available at: http://www.rational.com/uml/index.jtmpl.

Brutzman, D. P., “Virtual Reality Transfer Protocol (vrtp),”
[http://www.web3d.org/WorkingGroups/vrtp/]. June 1999.

Case, J., McCloghrie, K., and others, “Introduction to Community-based SNMPv2,”
RFC 1901, SNMP Research, Inc, Cisco Systems, Inc., Dover Beach Consulting, Inc.,
International Network Services. January 1996.

David, B., “rtpmon: A Third-Party RTCP Monitor,”
[http://bmrc.berkeley.edu/~drbacher/projects/mm96-demo/index.html]. September 1996.

Deering, S.E., “Host Extensions for IP Multicasting,” RFC 1112, August 1989.

Gamma, E., and others, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Pub Co, 1995.

Grand, M., Patterns in Java, John Willey & Sons, Inc., 1998.

Handley, M. and Perkins, C., “Guidelines for Writers of RTP Payload Format
Specifications,” Internet-Draft draft-ietf-avt-rtp-format-guidelines-03.txt, Internet
Engineering Task Force, 24 June 1999. Available at:
http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-format-guidelines-03.txt.

Internet Engineering Task Force, Request for Comments (RFC) 2327, SDP: Session
Description Protocol, April 1998.
Available at: http://ietf.cnri.va.us/rfc/rfc2327.txt.

214

Institute of Electrical Electronic Engineers (IEEE), Standard for Distributed Interactive
Simulation IEEE Std 1278.1, 1995.
Macedonia, M. R. and Brutzman, D. P., “MBone Provides Audio and Video Across the
Internet,” IEEE Computer, vol. 27, no. 4, pp. 30-36, April 1994. Available at:
ftp://taurus.cs.nps.navy.mil/pub/i3la/mbone.html.

Makofske, D. and Almeroth, K., “MHealth: A Real-Time Multicast Tree Visualization
and Monitoring Tool,”
[http://imj.ucsb.edu/mhealth/]. June 1999.

Rational Software Corp., “Rational Rose,”
[http://www.rational.com/products/rose/index.jtmpl]. August 1999.

Robinson, J. L. and Stewart, J.A., “MultiMON - an IPmulticast Monitor.”
[http://www.merci.crc.doc.ca/mbone/MultiMON]. June 1998.

Sarac, K. and Almeroth, K., “SDR Session Monitoring Effort - Global Sessions,”
[http://imj.ucsb.edu/sdr-monitor/global/index.html]. September 99.

Schulzrinne, Casner and others, “RTP: A Transport Protocol for Real-Time
Applications,” Internet-Draft draft-ietf-avt-rtp-new-04.txt (RFC 1889), Internet
Engineering Task Force , 25 June 1999. Available at:
http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-new-04.txt.

Schulzrinne, “RTP Profile for Audio and Video Conferences with Minimal Control,”
Internet-Draft draft-ietf-avt-profile-new-06.txt (RFC 1890), Internet Engineering Task
Force, 25 June 1999. Available at:
http://www.ietf.org/internet-drafts/draft-ietf-avt-profile-new-06.txt.

Stallings, W., Data and Computer Communications, Fifth Edition, pp. 685-697, Prendice
Hall, 1997.

Sun Microsystems, Inc., “Java Media Framework API,”
[http://www.javasoft.com/products/java-media/jmf/index.html]. July 1999.

Sun Microsystems, Inc., Java Media Framework API Programmer’s Guide v. 0.7, 21
May 1999. Available at:
http://www.javasoft.com/products/java-media/jmf/2.0/jmf20-07-guide.pdf.

Sun Microsystems, Inc., Java Media Framework Early Access Specification v. 0.7
(Javadoc). May 1999. Available at:
http://www.javasoft.com/products/java-media/jmf/2.0/jmf20-07-apidocs/index.html

Sun Microsystems, Inc., “Java Native Interface,”
[http://java.sun.com/products//jdk/1.2/docs/guide/jni/index.html]. August 1999.

UCL Networked Multimedia Research Group, “Videoconferencing Tool,”

215

[http://www-mice.cs.ucl.ac.uk/multimedia/software/vic/]. June 1999.

UCL Networked Multimedia Research Group, User Guide for VIC v2.8 Version 1
(DRAFT), 29 September 1998.Available at:
http://www-mice.cs.ucl.ac.uk/multimedia/software/.

UCL Networked Multimedia Research Group, “Robust-Audio Tool,”
[http://www-mice.cs.ucl.ac.uk/multimedia/software/rat/]. June 1999.

UCL Networked Multimedia Research Group, “Session Directory,” [UCL Networked
Multimedia Research Group]. August 1999.

Word Wide Web Consortium, “Extensible Markup Language,”
[http://www.w3.org/XML/]. August 1999.

216

THIS PAGE LEFT INTENTIONALLY BLANK

217

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center … … … … … … … … … … … … … …2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library … ..2
Naval Postgraduate School.
411 Dyer Rd.
Monterey, California, 93943-5101

3. Chair, Code CS … 1
Department of Computer Science
Naval Postgraduate School
Monterey, California, 93943-5121

4. Dr. Michael J. Zyda, Code CS/Zk … … … … … … … … … … … … … … … ..… ...1
Naval Postgraduate School
Monterey, California, 93943-5121

5. Dr. James Eagle, Code UW… ..… … … … … … … … … … … … … … … … ..…1
Naval Postgraduate School
Monterey, California, 93943-5121

6. Dr. Don Brutzman, Code UW/Br … … … … … … … … … … … … ..… 1
Naval Postgraduate School
Monterey, California, 93943-5121

7. Rex Buddenberg, Code SM/Bu … … … … … … … … … … … … … … 1
Naval Postgraduate School
Monterey, California, 93943-5121

8. Don McGregor, Code C3… … … … … … ..… … … … … … … … … … … … … 1
Naval Postgraduate School
Monterey, California, 93943-5121

9. Dr. Michael R. Macedonia .. 1
Chief Scientist and Technical Director
US Army STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

218

10. Dr. J. Mark Pullen .. 1
Department of Computer Science and C3I Center
George Mason University
Fairfax, VA 22030

11. Jaron Lanier ..1
Chief Scientist
Advanced Network & Services, Inc.
200 Business Park Drive
Armonk, NY 10504 USA

12. Bob Barton ... 1
Fraunhofer CRCG
321 South Main St.
Providence, RI 02903

13. Michael D. Myjak .. 1
Vice President R&D
The Virtual Workshop, Inc.
P.O. Box 98
Titusville, Florida 32781

14. Dr. Christophe Diot ... 1
Sprint ATL
1 Adrian Court
Burlingame, CA 94010

15. Dr. Jon Crowcroft 1
Department of Computer Science
University College London
Gower Street
London WC1E 6BT
United Kingdom

16. Kevin C. Almeroth ... 1
Computer Science Department
University of California
Santa Barbara, CA 93106

17. Ivan Wong ... 1
Java Media Framework Techical Lead
Sun Microsystems
901 San Antonio Road
Palo Alto, CA 94303

219

18. Bill Strahm .. 1
Intel Corporation
2111 N.E.25th Avenue
Hillsboro, Oregon 97124

19. Lawrence A. Rowe .. 1
Computer Science Division - EECS
University of California, Berkeley
Berkeley, CA 94720-1776

20. Instituto de Pesquisas da Marinha .. 1
Rua Ipiru, 2
Ilha do Governador
Rio de Janeiro – RJ – Brazil

21. Diretoria de Sistemas de Armas da Marinha .. 1
Rua Primeiro de Março, 118
Rio de Janeiro – RJ – Brazil
CEP 20010

22. Centro de Instrução Almirante Wandenkolk ... 1
Ilha das Enxadas
Rio de Janeiro – RJ – Brazil
CEP 20000

23. LCDR Francisco Carlos Afonso … … … … … … … … … … … … .… 3
Rua Marques de Valenca, 40/201
Tijuca
Rio de Janeiro – RJ – Brazil
CEP 20010

